

Manjunath.R

#16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India

*Email: manjunath5496@gmail.com

"The only true wisdom is in knowing you know nothing."

− Socrates

Linux Commands, C, C++, Java and Python Exercises For Beginners

(Practical Exercises For Learners)

Disclaimer

© Copyright 2019 Manjunath.R

Despite my best efforts to assure the accuracy of the material in this book, I do not accept

and hereby disclaim any liability to any party for any loss, damage, or disruption caused by

mistakes or omissions, whether caused by negligence, accident, or any other cause.

For any suggestions or concerns, please write to me: manjunath5496@gmail.com

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International License.

(CC BY-NC-SA 4.0)

Under the terms of the cc-4.0-by license, you may:

 Share – copy and distribute the content in any form or media

 Remix, alter, and build upon the content for any non-commercial objective

As long as you comply by the conditions of the license, the licensor cannot revoke these rights.

You have to

 Provide proper recognition;

 Cite the license by including a link to it (https://creativecommons.org/licenses/by-nc-sa/4.0/);

and

 Specify whether (and if so, which) changes were made from the original.

Dedication

I dedicate this book to every individual, programmer, teacher, educational institutions and

enterprise corporations in every country of the world for their immense contributions towards the

process of creating, designing, deploying and supporting software…

Acknowledgements

Without the amazing work of some renowned programmers, their creativity, and their inventiveness in the

field of software programming, this book would not have been accomplished. I would like to use this

opportunity to thank my dearest friend and well-wisher "Lawrence" for his unwavering support during

the COVID crisis and for giving me access to all the resources I needed to finish this book. I want to

express my gratitude to my family for their support and encouragement as I wrote this book, especially to

my mother, who has been a tremendous source of inspiration in my life. I owe a lot of gratitude to my

mother for teaching me how to be perseverant and strong in life. Finally, I want to emphasize how crucial

patience is when writing a book or taking on any other project in life.

Foreword

I'm neither the proprietor of a well-known publishing house or a top IT firm with hundreds of in-

house programmers who could easily produce anything I needed. I am a self-employed software

engineer who is passionate about what I do, and believe me when I say that a lot of work and

effort went into compiling this comprehensive edition. I'll be overjoyed if it helps even a few

others reach their ideal positions in their professions.

Thank You

− Manjunath.R

An Enjoyable Introduction to Coding

Introduction

 Today's devices are mostly powered by software: almost everyone uses Facebook,

WhatsApp and Twitter to communicate, many phones have internet-connected desktops, and the

majority of office work requires using a computer to do tasks. As a response, there is a huge

increase in demand for programmers. Numerous books, interactive websites, and programmer

training courses make the bold claim that they can turn ambitious novices into software

engineers earning six figures. This book is for all programmers, whether you are a novice or an

experienced pro. Its numerous examples and well paced discussions will be especially beneficial

for beginners. Those who are already experienced with programming will probably gain more

from this book, of course. You will be at a modest level of programming proficiency when you

have finished this book, from where you can take yourself to next levels so that you can

automate simple tasks such as:

 Making a file backup

 Get rid of the irritating emails

 Completing online forms

This book will make an amazing complement to any tutorial and serve as a source of information

to your specific inquiries if you are just learning what kind of animals C, C+ +, Java, PHP,

Python, and JavaScript are. Even if your career has nothing to do with computers, the skills you

learn from programming can be valuable at school and at work. Programming is a pleasant,

occasionally difficult and perhaps frustrating activity. Creativity, logic, and problem-solving are

all enhanced through programming.

 Educational institutions are teaching it

 Corporate societies are employing it

 Pupils need it

 (Pedagogues desire it... ;)

 (Coders perceive it... :)

Have Fun!

"The only way to learn a new programming language is by writing programs in it."

– Dennis Ritchie

As you progress through this book, keep in mind that programming can be enjoyable. Do not

consider of this as work. Consider programming as a means to develop entertaining games or

software applications that you can show off to others or your friends. Programming is a

tremendous brain workout and is essential today because so much of our everyday world is

automated. But above all, you have access to the quick-paced, creative world that depends on

machine connections.

Note:

 Linux version used: CentOS Linux release 7.3.1611 (Core)

 Python version used: 3.7.3

The Basic Programming Principles That Every Programmer Should Know:

1. Always be aware of the purpose of your software program before beginning to write it.

2. Programming is not the solution; it is merely a means to achieve a solution.

3. Consider the problem rather than just the solution.

4. Always try to make things simpler; anyone can come up with a complicated answer to a

problem. To make a solution simple while remaining consistent, it requires extra work

and consideration.

5. Reduce Deeply Nested Ifs or Loops: When your software program is deeply nested, your

program becomes complicated and disorganized.

6. Delete Unnecessary Code. Make sure your software program is safe, secure, reliable,

testable and clear to read.

7. Give code reviews some attention so you can spot bugs early, before they cause serious

problems in your software application.

8. Reduce complexity. Software programs must have clear explanations.

9. Generalize your software program. Make sure your software program is documented.

Understanding the function of a certain component of the software application is greatly

aided by the documentation and comments.

10. Fancy algorithms and data structures are more difficult to implement. Use simple,

efficient, appropriate algorithms and data structures.

11. Refractor your software program frequently to improve its internal software attributes in

terms of upkeep, testing and comprehension.

12. Each time you make a change to your software program: check it, build it and test it.

13. Before being released, all software codes must pass each and every unit test.

14. Always use caution when using someone else's code. Maintain a standardized, orderly

and generally consistent coding style.

15. Avoid implementing a code style that is too hard to understand.

16. Because it makes the code more difficult to maintain, duplication is seen adversely in

software programming.

17. Look for bugs and flaws and fix them. Divide your software program into Brief, Concise

Units.

18. Avoid overdesigning. Focus your software design on the requirements of the clients.

19. Program defensively. Functions should be simple and do a distinct, defined task.

20. Create reusable functions and Keep the functions as simple, immutable and manageable

as possible.

21. When naming your variables and functions, choose names that are meaningful and

descriptive.

22. Put your software program's structure on view by using indentation.

23. Delete any unused variables and functions; do not comment them.

24. If you feel that a part of the software program is excessively unorganized, regroup and

modify it, or even split it up into different portions.

25. Avoid using GOTO statements because they cause the software program to be

unstructured, which makes it harder to understand and makes debugging more complex.

26. Avoid using the same identifier more than once.

27. The length of functions shouldn't be excessively long.

28. Think Twice, Code Once: Encourage yourself to consider the problem more before

coming up with a solution.

29. The very first step in making a software program readable by humans is to add

comments. Comments should be detailed explanations of a software program.

30. White space should be utilized regularly to increase code readability even though it has

little significance to compilers.

31. Coding standards must be followed while formatting code.

32. Avoid security pitfalls and Keep your software code portable.

33. All software design is redesign. Take advice from others' experience.

34. The writing of software program should make it simple for a future software developer

to correct errors or modify its functionality.

35. Never compromise clarity for a false sense of efficiency.

36. Enhance the appearance of software program by avoiding excessively long names or

ambiguous acronyms

37. Look for a method that employs a loop rather than duplicating lines. Compared to 100

individual blocks of code, one loop that can handle 100 repetitions is simpler to debug.

"More computing sins are committed in the name of efficiency (without necessarily

achieving it) than for any other single reason − including blind stupidity."

− W.A. Wulf

You're not coding to amaze strangers. You're in this

profession to find ways to resolve problems.

Important Programming Concepts Every Programmers and

Developer Should Be Familiar With:

1. Data Types: Understanding the various data types such as integers, floating-point numbers,

characters, and Booleans is crucial for any programmer.

2. Variables: Variables allow programmers to store and manipulate data in their programs.

3. Control Structures: Control structures such as if statements, loops, and switch statements allow

programmers to control the flow of their programs.

4. Functions: Functions allow programmers to break their programs down into smaller, more

manageable pieces.

5. Arrays: Arrays are a way to store multiple values in a single variable.

6. Pointers: Pointers are variables that hold memory addresses, and are used to manipulate memory

directly.

7. Object-Oriented Programming (OOP): OOP is a programming paradigm that focuses on

creating objects that encapsulate data and behavior.

8. Inheritance: Inheritance allows programmers to create new classes that inherit properties and

behaviors from existing classes.

9. Polymorphism: Polymorphism allows programmers to use the same method or operator to work

with different types of data.

10. Algorithms: Algorithms are step-by-step procedures for solving problems, and are a crucial part

of programming.

11. Debugging: Debugging is the process of finding and fixing errors in code, and is an essential

skill for any programmer.

12. Software Development Life Cycle (SDLC): SDLC is the process of developing software from

initial planning to final deployment.

Understanding these concepts and how to apply them will help programmers

write better code and create more robust software.

"The computer programmer is a creator of universes for which he alone is the lawgiver. No playwright,

no stage director, no emperor, however powerful, has ever exercised such absolute authority to arrange a

stage or field of battle and to command such unswervingly dutiful actors or troops."

− Joseph Weizenbaum

Top 10 Programming Languages and Their Applications

Python  Artificial Intelligence, Deep learning and Machine Learning

JavaScript  Rich Interactive Web Development

Java  Enterprise Application Development

R Data Analysis

C/C++ Operating Systems and System Tools

Golang Server-Side Programming

C#  Application and Web Development Using .NET

PHP Web Development

SQL Database Management

Swift For Mobile Application Development on iOS

How much time does it take to become a good programmer?

A skilled coder can identify the best solution to any problem and solve even the most challenging

issues. Being a good programmer requires constant knowledge upkeep and the acquisition of

new skills. A PhD isn't always necessary to become a skilled programmer, but discipline and

determination are. Being a successful programmer demands you to be one step ahead, while

becoming a respectable coder takes years of hard effort.

Image Credit: Wikipedia.org

Contents

LINUX COMMANDS 1

C Exercises 325

C++ Exercises 446

Java Exercises 575

Python Exercises 721

LINUX − OVERVIEW 866

C − OVERVIEW 870

C++ − OVERVIEW 915

JAVA – OVERVIEW 968

PYTHON − OVERVIEW 1027

"A language that doesn't affect the way you think

about programming is not worth knowing."

― Alan J. Perlis

LINUX COMMANDS

Linux is an open-source Unix-like operating system built on the Linux kernel, which Linus

Torvalds initially made available on September 17, 1991. People switching from Windows or

macOS may find Linux difficult to use and comprehend, and many people give up using it

because they are not aware of the commands and shortcuts that Linux offers. When using Linux,

you can accomplish tasks much more quickly than when using other operating systems by

becoming familiar with the useful commands and how to use them correctly. We'll examine a

few widely used Linux commands in this chapter.

When working with unstructured files in Linux, whether you are a sys admin or a database

administrator, there are a number of commands that will be very helpful to you in your everyday

job. Working as developers requires us to use the Linux command line occasionally. Linux is

typically considered to be dominant for public Internet servers, powering well over twice as

many servers as Windows Server. Linux has a monopoly on the supercomputer market,

powering all 500 of the TOP computers. It's quite easy to customize Linux. Your OS can be

modified. In this chapter, we'll look at some fundamental Linux commands that every

programmer should be familiar with.

1

17 Principles of the philosophy of UNIX

 Principle of Modularity: A system should be composed of several components that are

joined, collaborate well, and have clearly defined functions

 Principle of Clarity: Clearness is better than smartness

 Principle of Composition: Create software that can communicate with other software

 Principle of Separation: Programming mechanisms and rules should be kept distinct.

Keep front-end interfaces and back-end engines separate

 Principle of Simplicity: Build for simplicity and only add complexity where necessary

 Principle of Parsimony: Only write a large program when it is clear by demonstration

that nothing else will work

 Principle of Transparency: Design with visibility in view to simplify analysis and

troubleshooting

 Principle of Robustness: Transparency and ease of use produce robustness

 Principle of Representation: Create programs easier to understand for any programmer

involved in the project so that it can be maintained

When offered the choice, programmers should choose to

complicate the data rather than the procedural logic of

the software because complex data is simpler for us to

understand than complex logic

2

 Principle of Least Surprise: Developers should be encouraged to create user-friendly,

intuitive products

 Principle of Silence: Allow programmers and other programs to get the data they require

from a program's output without having to interpret unnecessary extensive and detailed

 Principle of Repair: Programmers should create software that fails in a way that is simple

to identify and diagnose

 Principle of Economy: Project development costs should be minimized

 Principle of Generation: Programmers should develop abstract, high-level programs that

produce code rather than writing code by hand to decrease human error and save time

 Principle of Optimization: Before you can optimize it, get it working. Software should

be developed and tested before being masterfully crafted by developers

 Principle of Diversity: Make programs flexible, enabling their use in ways other than

those that their creators intended

 Principle of Extensibility: Increase the usefulness and lifespan of the developer's written

code

3

Better skills come with increased learning.

Your main focus as a novice should be on becoming familiar with the ins and outs of

operating system architecture as well as discovering shortcuts and time-saving techniques.

4

CentOs is a wonderful option if you use Windows and want to learn Linux because it is one

of the best Linux distributions for beginners. Your first few days using CentOs won't be that

odd. But you must learn how to utilize Linux's command line interface if you want to

experience its full capabilities. You will initially experience some difficulty learning several

instructions. Although employing the instructions won't make you a genius, it will assist you in

carrying out certain fundamental tasks. Here are the most basic CentOs commands for new

users to ensure a smooth start. Let's get right into it!

5

Linux Commands

Description:

Display system date and time.

Command:

date

Description:

Display calendar.

Command:

cal

"... being a Linux user is sort of like living in a

house inhabited by a large family of carpenters

and architects. Every morning when you wake

up, the house is a little different. Maybe there

is a new turret, or some walls have moved. Or

perhaps someone has temporarily removed the

floor under your bed."

~ Unix for Dummies, 2nd Edition

6

Description:

Display date, time and calendar.

Command:

date & cal

Description:

Display August month 2016 year calendar.

Command:

cal 8 2016

Description:

Used to clear the terminal window.

Command:

clear

Description:

Exit from the terminal window.

Command:

exit

7

Description:

Display free and used system memory.

Command:

free

Description:

Display free and used system memory in bytes.

Command:

free -b

Description:

Display free and used system memory in kilobytes.

Command:

free -k

Description:

Display free and used system memory in megabytes.

Command:

8

free -m

Description:

Change user password.

Command:

passwd

Description:

Power-off the machine.

Command:

shutdown

Description:

Power-off the machine immediately.

Command:

shutdown -h now

Description:

Power-off the machine after 10 minutes.

9

Command:

shutdown -h +10

Description:

Print current working directory.

Command:

echo $PWD

Description:

Print previous working directory.

Command:

echo $OLDPWD

Description:

Executes the 11th command in command history.

Command:

!11

10

Description:

Reveals your command history.

Command:

history

Description:

Power off or reboot the Operating system.

Command:

sudo reboot

Description:

Display the IP address of the host.

Command:

ip address

Description:

List the size of files and directories.

Command:

ls -s

11

Description:

View mounted file systems.

Command:

mount

Description:

Display the information of disk usage of files and directories.

Command:

du

Description:

Tells you how long the system has been running.

Command:

uptime

Description:

Set current date as 02 Nov 1988.

Command:

12

Description:

Set current time as 12:11:02 IST.

Command:

Description:

View Specific Disk Partition in Linux.

Command:

fdisk -l /dev/sda

Description:

Lists all files and directories in the present working directory.

Command:

ls

Description:

Report the process information.

377

date --set 1998-11-02

date --set 12:11:02

13

Command:

ps

Description:

Display disk usage.

Command:

df

Description:

Display disk usage in gigabytes, megabytes, or kilobytes.

Command:

df -H

Description:

Delete every file and every directory.

Command:

rm -r *

14

Description:

Provides a quick overview of the currently running processes.

Command:

top

Description:

The system performs an immediate reboot.

Command:

reboot

Description:

Terminate processes without having to log out or reboot.

Command:

kill

Description:

Change the current working directory.

Command:

cd

15

Description:

Create a new session on the system.

Command:

login

Description:

List open files.

Command:

lsof

Description:

List USB devices.

Command:

lsusb

Description:

Check the status of the network services.

Command:

16

service network status

Description:

Start the network service.

Command:

service network start

Description:

Stop the network service.

Command:

service network stop

Description:

Restart the network service.

Command:

service network restart

Description:

Report information about the users currently on the machine and their processes.

17

Command:

w

Description:

Display the current directory.

Command:

pwd

Description:

Displays CPU architecture information (such as number of CPUs, threads, cores, sockets, and
more).

Command:

lscpu

Description:

Displays the number of processing units available to the current process.

Command:

nproc

18

Description:

The system performs an immediate reboot.

Command:

init 6

Description:

Power-off the machine.

Command:

init 0

Description:

List files by date.

Command:

ls -lrt

Description:

Report information about storage devices such as hard disks, flash drives etc.

Command:

lsblk

19

Description:

Show exit status of previous command.

Command:

echo $?

Description:

Lists a few useful info commands.

Command:

info

Description:

Prints current year's calendar.

Command:

cal -y

Description:

Check the status of all the services.

Command:

20

service --status-all

Description:

Display time in hh:mm:ss.

Command:

date +%T

Description:

Tells when the user last logged on and off and from where.

Command:

last -1 username

Description:

Sort files and directories by extension name.

Command:

ls -X

Description:

Display the manual for the pwd command.

21

Command:

man pwd

Description:

Displays information about running processes in the form of a tree.

Command:

pstree

Description:

Resets your terminal.

Command:

reset

Description:

Displays What date is it this Friday.

Command:

date -d fri

22

Description:

Displays the size of each individual file.

Command:

du -a

Description:

Display information about the Advanced configuration and power Interface.

Command:

acpi

Description:

Takes you two folders back.

Command:

cd ../..

Description:

Takes you to the previous directory.

Command:

cd -

23

Description:

Displays a list of shell built-in commands.

Command:

help

Description:

Lists your last logins.

Command:

last yourusername

Description:

Create a new directory called myfiles.

Command:

mkdir myfiles

Description:

Remove the directory myfiles.

Command:

24

rmdir myfiles

Description:

Disable password for a specific user "root1".

Command:

passwd -d root1

Description:

Switch to user "root1".

Command:

sudo su root1

Description:

Exit from the terminal window.

Command:

logout

Description:

Creates a user "root1".

25

Command:

useradd "root1"

Description:

Assign password to user "root1".

Command:

passwd "root1"

Description:

Repeats the last command.

Command:

!!

Description:

Display Who you are logged in as.

Command:

whoami

26

Description:

Display the login name of the current user.

Command:

logname

Description:

Report the name of the kernel.

Command:

uname

Description:

Print the kernel version.

Command:

uname -v

Description:

Print the operating system.

Command:

uname -o

27

Description:

Report the machine hardware name.

Command:

uname -m

Description:

Print version information and exit.

Command:

uname --version

Description:

Print the kernel release.

Command:

uname -r

Description:

Report the network node hostname.

Command:

28

uname -n

Description:

Display all port connections (both TCP and UDP).

Command:

netstat -a

Description:

Display only TCP (Transmission Control Protocol) port connections.

Command:

netstat -at

Description:

Display only UDP (User Datagram Protocol) port connections.

Command:

netstat -au

Description:

Display all active listening ports.

29

Command:

netstat -I

Description:

Display all active listening TCP ports.

Command:

netstat -It

Description:

Display all active listening UDP ports.

Command:

netstat -lu

Description:

Reveal all the information about the current user (user id, username, group id, group name etc.).

Command:

id

30

Description:

Reveal all the information about the user "root1" (user id, username, group id, group name etc.).

Command:

id root1

Description:

Print the machine's architecture.

Command:

arch

Description:

Display the list of available fonts.

Command:

fc-list

Description:

Create two directories (myfiles, files).

Command:

mkdir myfiles files

31

Description:

install apache (CentOS).

Command:

yum install httpd

Description:

install apache (Ubuntu).

Command:

apt install httpd

Description:

upgrade apache (CentOS).

Command:

yum update httpd

Description:

upgrade apache (Ubuntu).

Command:

32

apt update httpd

Description:

uninstall apache (CentOS).

Command:

yum remove httpd

Description:

uninstall apache (Ubuntu).

Command:

apt remove httpd

Description:

Display usage summary for the command (date).

Command:

date --help

Description:

List active connections to/from system.

33

Command:

ss -tup

Description:

List internet services on a system.

Command:

ss -tupl

Description:

Display all active UNIX listening ports.

Command:

netstat -lx

Description:

Display all the active interfaces details.

Command:

ifconfig

34

Description:

Display information of all network interfaces.

Command:

ifconfig -a

Description:

Compare the contents of two files (1.txt, 2.txt).

Command:

diff 1.txt 2.txt

Description:

Tells you how many lines, words, and characters there are in a file (1.txt).

Command:

wc 1.txt

Description:

Compresses file (1.txt), so that it take up much less space.

Command:

gzip 1.txt

35

Description:

Uncompresses file (1.txt) compressed by gzip.

Command:

gunzip 1.txt

Description:

Examine the contents of the file (1.txt).

Command:

cat 1.txt

Description:

Display calendar.

Command:

ncal

Description:

Removes the file (1.txt).

Command:

36

rm 1.txt

Description:

Rename a file named 1.txt to 0.txt.

Command:

mv 1.txt 0.txt

Description:

Replace the contents of 0.txt with that of 1.txt.

Command:

cp 1.txt 0.txt

Description:

Create a empty file (test.txt).

Command:

touch test.txt

Description:

Print the last 10 lines of a file (1.txt).

37

Command:

tail 1.txt

Description:

Print N number of lines from the file (1.txt).

Command:

tail -n N 1.txt

Description:

Prints the number of words in a file (1.txt).

Command:

wc -w 1.txt

Description:

Prints the number of characters from a file (1.txt).

Command:

wc -m 1.txt

38

Description:

Prints the length of the longest line in a file (1.txt).

Command:

wc -L 1.txt

Description:

Print information about usb ports, graphics cards, network adapters etc.

Command:

lspci

Description:

View contents of a file (1.txt).

Command:

less 1.txt

Description:

Display calendar (last month, current month, and next month).

Command:

cal -3

39

Description:

Compare the contents of three files (1.txt, 2.txt, 3.txt) line by line.

Command:

diff3 1.txt 2.txt 3.txt

Description:

Compare two files (1.txt, 2.txt) line-by-line.

Command:

comm 1.txt 2.txt

Description:

Perform byte-by-byte comparison of two files (1.txt, 2.txt).

Command:

cmp 1.txt 2.txt

Description:

Prints the CRC checksum and byte count for the file "myfiles.txt".

Command:

40

cksum myfiles.txt

Description:

Append contents of files (1.txt, 2.txt) into one file (0.txt).

Command:

cat 1.txt 2.txt > 0.txt

Description:

Append contents of files (1.txt, 2.txt, 3.txt) into one file (0.txt).

Command:

sed r 1.txt 2.txt 3.txt > 0.txt

Description:

Append contents of files (1.txt, 2.txt, 3.txt) into one file (0.txt).

Command:

sed h 1.txt 2.txt 3.txt > 0.txt

Description:

Append contents of files (1.txt, 2.txt, 3.txt) into one file (0.txt).

41

mkdir test
cd test
pwd
touch test1.txt

Command:

sed -n p 1.txt 2.txt 3.txt > 0.txt

Shortcuts:

|
|
ctrl+c
ctrl+z

|
|
Halts the current command
Stops the current command

 |
|

|
|

ctrl+d

|
|

Logout the current session

 |
|

|
|
ctrl+w |

|
Erases one word in the current line |

|
| ctrl+u | Erases the whole line |
| ctrl+r | Type to bring up a recent command |

Description:

Writes contents of a file (0.txt) to output, and prepends each line with line number.

Command:

nl 0.txt

Description:

Create a empty file (test1.txt) inside a directory (test).

Command:

42

Description:

Gather information about hardware components such as CPU, disks, memory, USB controllers
etc.

Command:

sudo lshw

Description:

Gather information about file system partitions.

Command:

sudo fdisk -l

Description:

Displays the line (good morning) in which the string (good) is found in the file (1.txt).

Command:

grep good 1.txt

Description:

Append contents of files (1.txt, 2.txt, 3.txt) into one file (0.txt) using for loop.

43

| Command | Description
|: | :
| vi | Open vi editor
| i | Go to Insert mode
| |
| a =20; b =64; |
| print (a + b); |
| Hit Escape to return to Normal mode.
| :w hello.py | Save text

|
|
|
|
|
|
|
|
|

| :q | Quit |
| python hello.py |Print the output:84 |

Command:

for i in {1..3}; do cat "$i.txt" >> 0.txt; done

Description:

Search for files (test.txt, test1.txt, test2.txt, test.php, test.html) in a directory as well as its sub-
directories.

Command:

find test*

Description:

Displays status related to a file (1.txt).

Command:

stat 1.txt

Description:

44

Download the file (file.txt) from url "http: //website.com/files/file.txt".

Command:

wget http://website.com/files/file.txt

Description:

Display host's numeric ID in hexadecimal format.

Command:

hostid

Description:

Display file type of the file (myfiles.txt).

Command:

file myfiles.txt

Description:

Create a file (myfiles.txt) containing a text (Hello World).

Command:

echo 'Hello World' > myfiles.txt

45

echo "Hello world!" >> 1.txt
echo "this is 2nd line text" >> 1.txt
echo "last line!" >> 1.txt

Description:

Create a file (myfiles.txt) containing a text (Hello World).

Command:

printf 'Hello World' > myfiles.txt

Description:

Display IP address of the hostname.

Command:

hostname -i

Description:

Add a new line of text to an existing file (1.txt).

Command:

Description:

Displays a single line description about a command (cal).

46

| Command | Description
|: | :
| vi | Open vi editor
| i | Go to Insert mode
| Type some text. |
| Hit Escape to return to Normal mode.
| :w test.txt
| :q
| :q!

| Save text

|
|
|
|
|
|
|

| Quit |
|Quit without saving |

| Command | Description
|: | :
| vi | Open vi editor
| i | Go to Insert mode
| $name = "Paul"; |
| print "$name"; |
| Hit Escape to return to Normal mode.
| :w hello.pl
| :q
| perl hello.pl

| Save text

|
|
|
|
|
|
|
|

| Quit |
|Print the output: Paul |

| Command | Description
|: | :
| vi | Open vi editor
| i | Go to Insert mode
| echo "What is your name?" |
| read PERSON |
| echo "Hello, $PERSON" |
| Hit Escape to return to Normal mode.
| :w hello.sh
| :q
| sh hello.sh
|
|
|

| Save text
| Quit
| Output:
| What is your name?

|
|
|
|
|
|
|
|
|
|
|
|

| If you enter: Zara Ali |
| Hello, Zara Ali |

Command:

whatis cal

Description:

Check the network connectivity between host (your connection) and server (Google server).

47

412 427

Command:

ping google.com

Description:

Find the location of source/binary file of a command (cal).

Command:

whereis cal

There are 2 ways to use the command:

 Numeric mode

 Symbolic mode

Numeric mode Permission Type Symbolic mode

0 No Permission ---

1 Execute --x

2 Write -w-

3 Execute + Write -wx

4 Read r--

5 Read + Execute r-x

6 Read + Write rw-

7 Read + Write + Execute rwx

[manju@localhost ~]$ ps -ef | grep sshd

root 988 1 0 06:14 ? 00:00:00 /usr/sbin/sshd

manju 3501 3461 0 06:24 pts/0 00:00:00 grep --color=auto sshd

Check if the SSH server (sshd) is running

Overwrite existing file

$ echo "Albert Einstein" > 1.txt

Append a second line

$ echo "Alan Turing" >> 1.txt

48

cd /etc && ls

Execute ls after cd /etc

rm myfiles.txt && echo success || echo failed

[manju@localhost ~]$ echo This is the $SHELL shell

This is the /bin/bash shell

[manju@localhost ~]$ echo This is $SHELL on computer $HOSTNAME

This is /bin/bash on computer localhost.localdomain

[manju@localhost ~]$ echo The user ID of $USER is $UID

The user ID of manju is 1000

[manju@localhost ~]$ echo My home directory is $HOME

My home directory is /home/manju

env LANG=C bash -c 'ls test[a-z].txt'

testa.txt testb.txt testc.txt

env LANG=en_US.UTF-8 bash -c 'ls test[a-z].txt'

testa.txt testA.txt testb.txt testc.txt testC.txt

Print 'success' if myfiles.txt is

removed and print 'failed' if it is

not removed

[manju@localhost ~]$ bash -c 'echo $SHELL $HOME $USER'

/bin/bash /home/manju manju

[manju@localhost ~]$ env -i bash -c 'echo $SHELL $HOME $USER'

/bin/bash

49

[manju@localhost ~]$ prefix=John

[manju@localhost ~]$ echo Hello ${prefix}Dalton and ${prefix}Humphrys

Hello JohnDalton and JohnHumphrys

echo 'a=5;echo $a'

[manju@localhost ~]$ touch myfiles.txt

[manju@localhost ~]$ cat myfiles.txt

Hello World

[manju@localhost ~]$!to

touch myfiles.txt

echo $(a=5;echo $a)

5

a=5;echo $a

[manju@localhost ~]$ echo $HISTSIZE

1000

The number of commands that are stored in memory in

a history list while your bash session is ongoing

[manju@localhost ~]$ echo $HISTFILE

/home/manju/.bash_history Holds the name and location

of your Bash history file

50

echo $HISTFILESIZE

1000

[manju@localhost ~]$ ls *ile1.txt

file1.txt

[manju@localhost ~]$ ls f*ile1.txt

file1.txt

[manju@localhost ~]$ ls f*1.txt

file1.txt

[manju@localhost ~]$ ls file?.txt

file1.txt file2.txt file3.txt

[manju@localhost ~]$ ls fil?1.txt

file1.txt

[manju@localhost ~]$ ls fil??.txt

file1.txt file2.txt file3.txt

[manju@localhost ~]$ ls file??.txt

file23.txt file34.txt

 How many commands can be stored in the .bash_history file

51

[manju@localhost ~]$ ls test[5A].txt

testA.txt

[manju@localhost ~]$ ls test[A5].txt

testA.txt

[manju@localhost ~]$ ls file[!5]*.txt

file123.txt file1.txt file23.txt file2.txt file34.txt file3.txt

[manju@localhost ~]$ ls file[!5]?.txt

file23.txt file34.txt

[manju@localhost ~]$ ls [a-z]ile?.txt

file1.txt file2.txt file3.txt

[manju@localhost ~]$ ls [A-Z]ile?.txt

file1.txt file2.txt file3.txt

[manju@localhost ~]$ echo *

*

[manju@localhost ~]$ echo '*'

*

[manju@localhost ~]$ echo "*"

*

[manju@localhost ~]$ ls [a-z]*[0-9].txt

file123.txt file1.txt file23.txt file2.txt file34.txt file3.txt

List all .txt files starting with a

letter and ending in a number

52

ls ?????

List all files that have exactly five characters

ls [fF]*[3A].txt

List all .txt files that start with f or F and end with 3 or A

ls f[iR]*[0-9].txt

List all .txt files that start with f have i or R as second character and end in a number

ls [!f]*.txt

List all .txt files that do not start with the letter "f"

[manju@localhost ~]$ echo Einstein2 | sed 's/2/36/'

Einstein36

[manju@localhost ~]$ echo Einstein36 | sed 's/Einstein/Hilbert/'

Hilbert36

[manju@localhost ~]$ echo Hawking6 Lucy8 | sed 's/Hawking/Lucy/'

Lucy6 Lucy8

[manju@localhost ~]$ echo Lucy3 Lucy6 | sed 's/Lucy/Hawking/g'

Hawking3 Hawking6

53

[manju@localhost ~]$ who | cut -d' ' -f1 | sort

manju

manju

[manju@localhost ~]$ who | cut -d' ' -f1 | sort | uniq

manju

grep bash /etc/passwd | cut -d: -f1 | sort > bu.txt

Place a sorted list of all bash users in bu.txt

who | cut -d' ' -f1 | sort > users.txt

Place a sorted list of all logged on users in users.txt

ls /etc | grep conf

List of all filenames in /etc that contain the string "conf" in their filename

ls /etc | grep -i conf | sort

Display a sorted list

of logged on users

Display a sorted

list of logged on

users − but every

user only once

[manju@localhost ~]$ grep bash /etc/passwd

root:x:0:0:root:/root:/bin/bash

manju:x:1000:1000:su,root,yopp,hhhhh:/home/manju:/bin/bash

Display a list of all bash user accounts on this computer

Display a sorted list of all files in /etc

that contain the case insensitive string

"conf " in their filename

54

59

import os

os.system('ls')

List all the files and directories in the

current directory

import subprocess

subprocess.call ('ls')

428

90% of the public cloud workload is run on Linux distros.

The first ever Linux kernel just occupied only 65 KB.

import os

os.system('linux command')

import subprocess

subprocess.call ('linux command')

All of the 500 fastest supercomputers run Linux.

Execution of the linux command "ls" using the python program

55

Command:

last reboot

Description:

Show system reboot history

Command:

dmesg

Description:

Displays the messages from the kernel ring buffer (a data structure that records

messages related to the operation of the kernel)

Command:

cat /proc/cpuinfo

Description:

Display CPU information

56

Command:

cat /proc/meminfo

Description:

Display memory information

Command:

Description:

Display PCI (Peripheral Component Interconnect) devices

Command:

Description:

Display USB devices

lspci -tv

lsusb -tv

57

Command:

free -h

Description:

Display free and used memory (-h for human readable, -m for MB, -g for GB)

Command:

mpstat 1

Description:

Display processor related statistics

Command:

vmstat 1

Description:

58

Display virtual memory statistics

Command:

iostat 1

Description:

Display Input / Output statistics

Command:

watch df -h

Description:

Execute "df -h" command, showing periodic updates

Command:

Description:

ps -ef

59

Display all the currently running processes on the system

Command:

ip a

Description:

Display all network interfaces and IP address

Command:

dig wikipedia.org

Description:

Display DNS information for domain (wikipedia.org)

Command:

host wikipedia.org

Description:

60

Display the IP address details of the specified domain (wikipedia.org)

Command:

netstat -nutlp

Description:

Display listening Transmission Control Protocol (TCP) and the User Datagram

Protocol (UDP) ports and corresponding programs

Command:

rpm -qa

Description:

List all installed packages

Command:

yum list installed

Description:

List all installed packages (CentOS)

Command:

61

yum info httpd

Description:

Display description and summary information about package "httpd" (CentOS)

Command:

du -ah

Description:

Display disk usage for all files and directories in human readable format

Command:

du -sh

Description:

Display total disk usage off the current directory

Command:

62

cd /etc

Description:

Change to the /etc directory

Command:

ps -A

Description:

List the status of all the processes along with process id and PID

Command:

int main()

{

 printf("Hello world\n"); Hello.c

 return 0;

}

#include <stdio.h>

gcc Hello.c

63

Description:

Compile the C program saved in Hello.c file

Command:

int main()

{

std::cout << "Hello world!"; Hello.cpp

 return 0;

}

Description:

Compile the C++ program saved in Hello.cpp file

Command:

tty

Description:

Displays the file name of the terminal connected to standard input

#include <iostream>

g++ Hello.cpp

64

Command:

public static void main(String [] args) {

System.out.println("Hello, World!"); MyClass.java

}

}

Description:

Compile the Java program saved in MyClass.java file using javac compiler

Command:

od -b myfiles.txt

Description:

Displays the contents of myfiles.txt file in octal format

Command:

od -c myfiles.txt

public class MyClass {

javac MyClass.java

65

Description:

Displays the contents of myfiles.txt file in character format

Command:

od -An -c myfiles.txt

Description:

Displays the contents of myfiles.txt file in character format but with no offset

information

Command:

csplit myfiles.txt 13 62 101

Description:

If the file myfiles.txt has 123 lines, the csplit command would create four files: the xx00 file

would contain lines 1−12, the xx01 file would contain lines 13−61, the xx02 file would contain

lines 62−100, the xx03 file would contain lines 101−123

Command:

66

md5sum myfiles.txt

Description:

Prints a 32-character (128-bit) checksum of myfiles.txt file using the MD5 algorithm

Command:

more myfiles.txt

Description:

Displays the content of myfiles.txt file

Command:

sha1sum myfiles.txt

Description:

Prints SHA1 (160-bit) checksum of myfiles.txt file

Command:

SHA 1 → Secure Hash Algorithm 1

67

shred myfiles.txt

Description:

Overwrites the myfiles.txt file repeatedly − in order to make it harder for even very

expensive hardware probing to recover the data

Command:

cat myfile.txt

01. Einstein

02. Newton

03. Maxwell

04. Tesla

05. Edison

tac myfile.txt

05. Edison

04. Tesla

03. Maxwell

02. Newton

01. Einstein

Description:

Print the lines of myfile.txt in reverse (from last line to first)

68

Command:

Description:

Delete repeated lines in the file (myfiles.txt).

Command:

Description:

Displays a list of system services and whether they are started (on) or stopped

(off) in run levels 0−6

Command:

Description:

Power-off the system

442

uniq myfiles.txt

chkconfig --list

halt -p

Command:

xdg-open myfiles.txt

Description:

Open a file (myfiles.txt).

69

Command:

lastlog

Description:

Prints the details of the last login (login-name, port and last login time)

Command:

lastlog -t 1

Description:

Displays the login information (1 day ago)

Command:

lastlog -u manju

Description:

Display lastlog information for a particular user (manju)

70

Command:

cat /etc/passwd

more /etc/passwd

less /etc/passwd

getent passwd

Description:

List all users on Linux

Command:

tail -5 /etc/passwd

head -5 /etc/passwd

71

Description:

List last 5 users on Linux

List first 5 users on Linux

Command:

wall "The system will be shutdown in 10 minutes."

Description:

The message (The system will be shutdown in 10 minutes.) will be broadcasted to

all users that are currently logged in

Command:

chage -l manju

Description:

List the password and its related details for a user (manju)

72

Command:

chage -M 10 manju

Description:

Set Password Expiry Date for an user (manju)

Command:

chage -E "2020-07-30" manju

Description:

Set the Account Expiry Date for an User (manju)

Command:

chage -I 10 manju

Description:

Force the user (manju) account to be locked after 10 inactivity days

73

 cat /etc/hostname

 → localhost.localdomain

 hostname

 → localhost.localdomain

 nmtui

 # Configure a network interface IPv4 address

 yum check-update

 # Check whether any updates are available for your installed packages

 yum search httpd

 # Find any packages containing the specified keyword "httpd"

 ls /etc

 # List the contents of /etc

 ls /bin /sbin

 # List the contents of /bin and /sbin

 ls -al ~

 # List all the files (including hidden files) in the home directory

 ls -lh /boot

 # List the files in /boot in a human readable format

Display the hostname of the system

74

mkdir ~/mydir

Create a directory "mydir" under home directory

cd /etc ; mkdir ~/mydir

Change to the /etc directory and create a directory "mydir" under home directory.

rm -i file.txt

rename .txt .backup *.txt

Renames all .txt files replacing.txt with .backup

rm: remove regular empty file ‘file.txt’?

If we type "yes"

file.txt is removed

If we type "no"

file.txt is not removed

ls

file.txt cod.txt conf.txt

rename file FILE *

ls

FILE.txt cod.txt conf.txt

file /bin/cat /etc/passwd /usr/bin/passwd

Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd

75

Command:

ftp 192.168.42.77

Description:

Connect to an FTP server at remote server IP address "192.168.42.77"

Command:

Description:

Lists all the peers connected at various interfaces along with their MAC

Addresses and IP addresses

Command:

dnsdomainname

Description:

arp -a

76

Display the system's DNS domain name

Command:

domainname

Description:

Display the name of the domain your machine belongs to

Command:

echo 'Hello World!' | base64

Output: SGVsbG8gV29ybGQhCg==

Description:

Encode text (Hello World!) to base64

Command:

echo 'SGVsbG8gV29ybGQhCg==' | base64 -d

Output: Hello World!

Description:

77

Decode (SGVsbG8gV29ybGQhCg==) to text (Hello World!)

Command:

Description:

Build font information cache files

Command:

cat 1.txt

Einstein

Newton

Albert

fmt 1.txt

Einstein Newton Albert

Description:

Formats text in a single line

fc-cache -f -v

78

df -h | sort -rnk 5 | head -3 | \

awk '{ print "Partition " $6 "\t: " $5 " full!" }'

awk 'BEGIN { FS=":" } { print $1 "\t" $5 }' /etc/passwd

Display all the users on your system

ls *.xml

1.xml 2.xml

ls *.xml > list.txt

[manju@localhost ~]$ cat list.txt

1.xml

2.xml

for i in `cat list.txt`; do cp "$i" "$i".md ; done

Partition /boot : 51% full!

Partition / : 29% full!

Partition /run : 2% full!

[manju@localhost ~]$ ls

12.txt 2.xml.md Documents file34.txt Music Pictures tree.cpio

13.txt 3.txt Downloads file3.txt mydi Public users.txt

145.txt all echo FILE.backup mydir SHOW Videos

1.txt allfiles.txt file file.md mydir1 Templates

1.xml bu.txt file123.txt first.bash myfiles.txt test

1.xml.md Desktop file1.txt first.txt myFILEs.txt.xz testA.txt

2.txt DICT file23.txt foo1.txt newdir testB.txt

2.xml dir file2.txt list.txt nohup.out text

79

[manju@localhost ~]$ df -h /

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 18G 5.2G 13G 29% /

Check the actual

used space on the

current root device

less /proc/modules

Display information about what kernel−modules are loaded on your system

[manju@localhost ~]$ free −tm

 total used free shared buff/cache available

Mem: 999936 511156 73480 8572 415300 284236

Swap: 2097148 0 2097148

Display the memory usage including

totals in megabytes

[manju@localhost ~]$ date --date="3 months 1 day ago"

Mon Jul 18 23:17:47 PDT 2022

[manju@localhost ~]$ date -d "3 days"

Fri Apr 22 23:20:01 PDT 2022

Print the date 3 months and 1 day ago from the current date

Print the date 3 days in the future from now

[manju@localhost ~]$ cat myfiles.txt

Hello World

[manju@localhost ~]$ cat myfiles.txt | tr 'H' 'A' > myfilesB.txt

[manju@localhost ~]$ cat myfilesB.txt

Aello World

80

Command:

Description:

List the files in the current directory

Command:

Description:

Copy the files ending with .txt or .md to the user's home directory

lsattr

cp {*.txt,*.md} ~

[manju@localhost ~]$ fgrep 'He' myfiles.txt

Hello World

Look for the string "He" in the file "myfiles.txt"

[manju@localhost ~]$ grep --color -i Hello myfiles.txt

Hello World

[manju@localhost ~]$ cat myfiles.txt

Hello World

ls file*

List all files in the current directory starting with "file"

ls *file

List all files in the current directory ending with "file"

81

cat phy.txt

Albert Einstein was a German-born theoretical physicist, widely acknowledged to

be one of the greatest physicists of all time. Einstein is known for developing

the theory of relativity, but he also made important contributions to the

development of the theory of quantum mechanics.

fmt -w 1 phy.txt

 Albert

 Einstein

 was

 a

 German-born

 theoretical

 physicist,

 widely

 acknowledged

 to

 be

 one

 of

 the

 greatest

 physicists

 of

 all

 time.

 Einstein

 is

 known

 for

 developing

82

 the

 theory

 of

 relativity,

 but

 he

 also

 made

 important

 contributions

 to

 the

 development

 of

 the

 theory

 of

 quantum

 mechanics.

cat phy.txt

Albert Einstein was a German-born theoretical physicist, widely acknowledged to

be one of the greatest physicists of all time. Einstein is known for developing

the theory of relativity, but he also made important contributions to the

development of the theory of quantum mechanics.

fold -w 20 phy.txt

Albert Einstein was

83

 a German-born theor

etical physicist, wi

dely acknowledged to

 be one of the great

est physicists of al

l time. Einstein is

known for developing

 the theory of relat

ivity, but he also m

ade important contri

butions to the devel

opment of the theory

 of quantum mechanic

s.

Command:

traceroute google.com

Description:

Prints the route that a packet takes to reach the Google (172.217.26.206) host

from the local machine

Command:

cat 1.txt

84

Einstein

Newton

Albert

gzip 1.txt

zcat 1.txt.gz

Einstein

Newton

Albert

Description:

View the contents of zipped file

Command:

zdiff 1.txt.gz 2.txt.gz

Description:

Compare the contents of two zipped files (1.txt.gz, 2.txt.gz)

85

Command:

ss | less

Description:

List all connections

Command:

ss -aA tcp

Description:

Filter out TCP (Transmission Control Protocol) connections

Command:

ss -aA udp

Description:

Filter out UDP (User Datagram Protocol) connections

86

Command:

ss -lnt

Description:

Display only listening sockets

Command:

ss -ltp

Description:

Print process name and PID

Command:

ss -s

Description:

Print summary statistics

87

Command:

ss -tl6

Description:

Display only IPv6 connections

Command:

ss -tl -f inet

Description:

Display only IPv4 socket connections

Command:

ss -t4 state established

Description:

Display all IPv4 TCP sockets that are in connected state

88

Command:

pmap 3244

Description:

View the memory map of a process with Process ID (3244)

Command:

apropos -r 'remove file'

Description:

Find command that removes file

Command:

apropos editor

Description:

Display information about the editing programs that are available on a system

89

Command:

apropos pstree

Description:

Provide information about the pstree command (which displays the names of the

processes currently on the system in the form of a tree diagram)

basename /etc/passwd

Output: passwd

basename /usr/local/apache2/conf/httpd.conf

The apropos command is useful when you know what you want to do, but you have no idea what command

you should be using to do it. If you were wondering how to locate files, for example, the commands

apropos find

and

apropos locate

would have a lot of suggestions to offer.

90

Output: httpd.conf

echo a b c d e f| xargs

Output: a b c d e f

echo a b c d e f| xargs -n 3

Output: display only 3 items per line

a b c

d e f

Command:

env

Description:

Print out a list of all environment variables

Command:

91

printenv HOME

Description:

Print HOME variable value

cat score.txt

Albert-30

John-50

William-80

Stephen-20

Justin-40

cut -d- -f2 score.txt

30

50

80

20

40

cut -d- -f1 score.txt

Albert

John

William

Stephen

Justin

92

cat 1.txt

Hello World

cat 2.txt

Computer Program

paste 1.txt 2.txt

Hello World Computer Program

cat 1.txt

Hello World

cat 2.txt

Computer Program

join 1.txt 2.txt

Hello World Computer Program

93

Command:

rev 1.txt

Description:

Reverse lines of a file (1.txt)

cat 3.txt

22

33

11

77

55

sort 3.txt

11

22 sorts numeric values in 3.txt file and displays sorted output

33

55

77

94

cat 1.txt

Hello World

cat 1.txt | tr "[a-z]" "[A-Z]"

 convert from lower case to upper case

HELLO WORLD

cat 5.txt

zz

zz

yy

yy

yy

xx

uniq 5.txt

zz removes duplicate lines and displays unique lines

yy

xx

95

cat 6.txt

Einstein

Newton

Tesla

nl 6.txt

1 Einstein numbers the lines in a file (6.txt)

2 Newton

3 Tesla

Command:

ls -l *.txt

Description:

Lists the files with .txt extension

The thing with Linux is that the developers themselves are actually customers too: that has

always been an important part of Linux.

Linus Torvalds

96

ls /proc/bus/

List the contents of the /proc/bus/ directory

[manju@localhost ~]$ dmesg | grep "irq 1[45]"

[2.269581] ata1: PATA max UDMA/33 cmd 0x1f0 ctl 0x3f6 bmdma 0x1060 irq 14

[2.269585] ata2: PATA max UDMA/33 cmd 0x170 ctl 0x376 bmdma 0x1068 irq 15

echo Albert > 1.txt ; echo Einstein > 2.txt

cat 1.txt

Albert

cat 2.txt

Einstein

Find irq's allocated at boot time

cat /proc/ioports

List system's IO ports

[manju@localhost ~]$ s=01234567890abcdefgh; echo ${s:7}

7890abcdefgh

[manju@localhost ~]$ cd /home/manju; echo $PWD

/home/manju

[manju@localhost ~]$ cd ..; pwd

/home

[manju@localhost home]$ echo $-

himBH

97

[manju@localhost home]$ w | cut -d " " -f 1 - | grep -v USER | sort -u

manju

[manju@localhost ~]$ ls

12.txt allfiles.txt echo file3.txt mydi Pictures text

13.txt bu.txt file FILE.backup mydir Public tree.cpio

145.txt Desktop file123.txt file.md mydir1 SHOW users.txt

1.txt DICT file1.txt first.bash myfiles.txt Templates Videos

2.txt dir file23.txt first.txt myFILEs.txt.xz test

3.txt Documents file2.txt foo1.txt newdir testA.txt

all Downloads file34.txt Music nohup.out testB.txt

Users currently connected

[manju@localhost ~]$ echo "\\"

\

[manju@localhost ~]$ echo Al{ber,an,er}t

Albert Alant Alert

[manju@localhost ~]$ echo ${Albert:=Einstein}

Einstein

[manju@localhost ~]$ echo $[5*5]

25

98

ls -ldh * | grep -v total | \

awk '{ print "Size is " $5 " bytes for " $9 }'

Size is 135K bytes for 12.txt

Size is 13M bytes for 13.txt

Size is 0 bytes for 145.txt

Size is 7 bytes for 1.txt

Size is 9 bytes for 2.txt

Size is 8 bytes for 3.txt

Size is 20 bytes for all

Size is 13M bytes for allfiles.txt

Size is 11 bytes for bu.txt

Size is 6 bytes for Desktop

Size is 0 bytes for DICT

Size is 6 bytes for dir

Size is 6 bytes for Documents

Size is 6 bytes for Downloads

Size is 0 bytes for echo

Size is 0 bytes for file

Size is 0 bytes for file123.txt

Size is 0 bytes for file1.txt

Size is 0 bytes for file23.txt

Size is 0 bytes for file2.txt

Size is 45 bytes for mydir

Size is 47 bytes for mydir1

Size is 12 bytes for myfiles.txt

Size is 68 bytes for myFILEs.txt.xz

Size is 0 bytes for file34.txt

Size is 0 bytes for file3.txt

Size is 0 bytes for FILE.backup

Size is 3 bytes for file.md

Size is 13 bytes for first.bash

Size is 13 bytes for first.txt

Size is 66 bytes for foo1.txt

Size is 6 bytes for Music

Size is 31 bytes for mydi

Size is 6 bytes for newdir

Size is 148 bytes for nohup.out

Size is 6 bytes for Pictures

Size is 6 bytes for Public

Size is 0 bytes for SHOW

Size is 6 bytes for Templates

Size is 6 bytes for test

Size is 0 bytes for testA.txt

Size is 0 bytes for testB.txt

Size is 25 bytes for text

Size is 512 bytes for tree.cpio

Size is 12 bytes for users.txt

Size is 6 bytes for Videos

 99

Linux Unix

Free to use (open source) Licensed Operating System (closed source)

Linux is just the kernel Unix is a complete package of Operating System

Bash (Bourne Again SHell) is default shell for Linux Bourne Shell is default shell for Unix

Portable and is booted from a USB Stick Unportable

Source code is accessible to the general public Source code is not accessible to anyone

Uses Graphical User Interface with an optional

Command Line Interface

Uses Command Line Interface

Command:

Description:

Print the Default shell of user

Command:

Description:

Display the name of the currently running process ($0 is the name of the running process).

If you use it inside of a shell then it will return the name of the shell. If you use it inside of a

script, it will return the name of the script

echo $SHELL

echo $0

100

466

Command:

Description:

Print all files and folders − similar to ls command

Command:

Description:

Print the process ID of the current shell ($$ is the process ID of the current shell)

Command:

echo *

ps -p $$

Output:

PID TTY

3352 pts/0

TIME CMD

00:00:00 bash

sudo du -a Documents/ | sort -n -r | head -n 5

List 5 biggest files from directory "Documents"

101

Description:

List shells

Command:

Description:

Display the files in the current folder that start with the letter "m".

Command:

Description:

List last logins of users and what happened such as "shutdown" or "crash" etc.

Command:

cat /etc/shells

echo m*

last

Command:
echo ~

Description:

Print your home folder path

102

bzip2 -k phy.txt

Description:

Compresses but does not deletes the original file

phy.txt → phy.txt.bz2

Command:

bzip2 -d phy.txt.bz2

Description:

Decompresses the compressed file (phy.txt.bz2)

phy.txt.bz2 → phy.txt

Command:

bzcat phy.txt.bz2

103

Description:

Display the contents of compressed file (phy.txt.bz2)

Command:

bunzip2 phy.txt.bz2

Description:

Decompresses the compressed file (phy.txt.bz2)

Command:

crontab –l

Description:

Display current logged-in user's crontab entries

cat /dev/null > phy.txt

104

cp /dev/null phy.txt

echo "" > phy.txt

echo > phy.txt

Description:

Empty the content of a file (phy.txt)

Command:

nohup ping google.com &

Description:

Ping google.com and send the process to the background

Command:

105

nohup ping google.com > log.txt &

Description:

Save the ping logs to log.txt

pgrep -a ping

Output:

3858 ping google.com

4200 ping google.com

4236 ping google.com

kill 3858

pgrep -a ping

Output:

4200 ping google.com

4236 ping google.com

Command:

ls -la /home

106

Description:

Display the contents of /home

Command:

sudo shutdown 2

Description:

Power-off the machine after 2 minutes

Command:

shutdown -c

Description:

Cancel the shutdown process

Command:

pr 36.txt

107

Description:

Display the contents of the file (36.txt) one page after the other

Command:

Description:

Display all current terminal settings

Command:

ls -1

Description:

List files one per line

Command:

stty -a

108

yes John

Description:

Outputs a string (John) repeatedly until killed

Command:

vdir

Description:

List files and directories in the current directory (one per line) with details

Command:

who -b

Description:

Print when the system was booted

Open phy.txt with nano

109

nano phy.txt

Open phy.txt with vim

vim phy.txt

Command:

ls -al *.txt

Description:

Display all .txt files, including its individual permission.

w --ip-addr

Command:

uname -i

Description:

Display the platform of hardware

Command:

uname -p

Description:

Display the type of processor

Command:

cat /proc/interrupts

Description:

Display the interrupts

110

Displays information regarding the users currently on the machine, login time, IDLE time,

TTY and CPU time

Output:

11:12:10 up 1:29, 2 users, load average: 0.02, 0.04, 0.10

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

manju :0 :0 02:43 ?xdm? 3:30 0.65s gdm-session-worker [pa

manju pts/0 :0 11:01 2.00s 0.10s 0.01s w --ip-addr

w –short

Omits CPU time and login information

Output:

11:11:46 up 1:28, 2 users, load average: 0.02, 0.04, 0.11

USER TTY FROM IDLE WHAT

manju :0 :0 ?xdm? gdm-session-worker [pam/gdm-password]

manju pts/0 :0 2.00s w --short

Command:

findmnt

Description:

Display a list of currently mounted file systems

Command:

111

ip addr show

Description:

List IP addresses and network interfaces

Command:

netstat -pnltu

Description:

List active (listening) ports

Command:

Description:

Display systemd, kernel and journal logs

Command:

journalctl

112

sudo systemctl status network

Description:

Display the status of network service

Command:

sudo systemctl start network

Description:

Start the network service

Command:

sudo systemctl stop network

Description:

Stop the network service

Command:

113

sestatus -b

Description:

Display the current state of Booleans

Command:

getenforce

Description:

Reports whether SELinux is enforcing, permissive or disabled

setenforce 0

Security-Enhanced Linux (SELinux) is a security architecture for Linux systems that allows

administrators to have more control over who can access the system

114

getenforce

Output:

Permissive

setenforce 1

getenforce

Output:

Enforcing

 Enforcing - SELinux security policy is enforced.

 Permissive - SELinux prints warnings instead of enforcing.

 Disabled - No SELinux policy is loaded.

115

[manju@localhost ~]$ let a="36 + 5" ; echo $a

41

[manju@localhost ~]$ let a="20 + 50/10" ; echo $a

25

[manju@localhost ~]$ let a="20 - 50/10" ; echo $a

15

[manju@localhost ~]$ let a="20 * 50/10" ; echo $a

100

[manju@localhost ~]$ grep PASS /etc/login.defs

PASS_MAX_DAYS Maximum number of days a password may be used.

PASS_MIN_DAYS Minimum number of days allowed between password changes.

PASS_MIN_LEN Minimum acceptable password length.

PASS_WARN_AGE Number of days warning given before a password expires.

PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_MIN_LEN 5

PASS_WARN_AGE 7

[manju@localhost ~]$ grep ^PASS /etc/login.defs

PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_MIN_LEN 5

PASS_WARN_AGE 7

116

Command:

Description:

List all local user accounts in column

Command:

Description:

Create a directory "mydir1" and create a file "myfiles1.txt" in it

Command:

Description:

Create a file "file.md" and give only read access to others

cut -d: -f1 /etc/passwd | column

mkdir ~/mydir1 ; touch ~/mydir1/myfiles1.txt

echo hi > file.md ; chmod 744 file.md

[manju@localhost ~]$ ls -l $(which sudo)

---s--x--x. 1 root root 130776 Nov 5 2016 /bin/sudo

117

Command:

sestatus

Description:

Display the current status of the SELinux that is running on your system

Command:

Description:

Display full listing of processes on your system

Command:

sar

Description:

ps -aef

118

Display System Activity Report

Command:

ulimit

Description:

Report the resource limit of the current user

Output:

Unlimited The current user can consume all the resources the current system supports

2 types of resource limitation:

 Hard resource limit: The physical limit that the user can reach.

 Soft resource limit: The limit that is manageable by the user (its value can go up to the

hard limit)

Command:

119

ulimit -a

Description:

Report all the resource limits for the current user

Command:

Description:

Check the maximum stack size of the current user

Command:

Description:

Check out the max scheduling priority of the current user

ulimit -s

ulimit -e

120

Command:

Description:

Display the maximum number of user processes

Command:

Description:

Check out the size of virtual memory

Command:

Description:

Check out how many file descriptors a process can have

ulimit -u

ulimit -v

ulimit -n

121

Command:

man limits.conf

Description:

Display the in-depth information on the limits.conf configuration file

Command:

sar -V

Description:

Display the sar version

Command:

sar -u 2 5

Description:

Report CPU details total 5 times with the interval of 2 seconds

122

Command:

sar -n DEV 1 3 | egrep -v lo

Description:

Report about network interface, network speed, IPV4, TCPV4, ICMPV4 network traffic and errors

Command:

sar -v 1 3

Description:

Report details about the process, kernel thread, i-node, and the file tables

Command:

sar -S 1 3

Description:

Report statistics about swapping

123

Command:

sar -b 1 3

Description:

Report details about I/O operations like transaction per second, read per second, write per second

Command:

sudo systemctl status firewalld

Description:

Display the status of the firewalld

Command:

sudo systemctl start firewalld

Description:

Start the firewalld service

124

Command:

firewall-config

Description:

Start the graphical firewall configuration tool

firewall-cmd

Command:

firewall-cmd --list-all-zones

Description:

List all zones

Command:

firewalld is a firewall management tool for Linux operating systems

125

firewall-cmd --get-default-zone

Description:

Check the currently set default zone

Command:

firewall-cmd --list-services

Description:

Display currently allowed service on your system

Command:

firewall-cmd --list-ports

Description:

List the ports that are open on your system

Command:

126

firewall-cmd --zone=work --list-services

Description:

List services that are allowed for the public zone

Command:

mtr --report google.com

Description:

Provides information about the route that Internet traffic takes between the local

system and a remote host (google.com)

Command:

sudo yum install samba

Description:

install Samba (CentOS)

127

Command:

sudo firewall-cmd --add-service samba –permanent

Description:

Add Samba service to firewalld

Command:

zip q.zip q.txt

Description:

Create a zip file (q.zip)

Command:

Samba is client/server technology that implements network resource sharing across

operating systems. With Samba, files and printers can be shared across Windows,

Mac and Linux/UNIX clients.

128

unzip q.zip

Description:

Unzip a zip file (q.zip)

zipcloak q.zip

zipcloak prompts you for a password, and then ask you to confirm it:

 Enter password:

 Verify password:

...if the passwords match, it encrypts q.zip file

--

unzip q.zip

When you try to unzip the q.zip file, it prompts you for the password before

allowing you to extract the file (q.txt) it contains

129

Command:

zgrep -l "Einstein" *

Description:

Display the names of the files with the word (Einstein) present in it

Command:

zipsplit -n 1048576 q.zip

Description:

Split q.zip file to create a sequence of zipfiles (q1.zip, q2.zip…..) − each no larger

than 1048576 bytes (one megabyte)

You could concatenate (q1.zip, q2.zip…..) into a new file, w.zip, with the

command:

cat q*.zip > w.zip

130

Command:

mtr google.com

Description:

Test the route and connection quality of traffic to the destination host google.com

Command:

route

Description:

Display IP routing table of a Linux system

Command:

nmcli dev status

131

Description:

View all your network devices

Command:

nmcli con show

Description:

Check network connections on your system

Command:

Description:

List all TCP ports (sockets) that are open on a server

Command:

ss -ta

132

ss -to

Description:

Display all active TCP connections together with their timers

Command:

type -a alias

Description:

Check Bash Aliases in Linux

Difference between %B and %b is, %B will print full month name while %b will print abbreviated month

name.

echo "We are in the month = $(date +%b)"

Difference between %Y and %y is %Y will print 4 digits while %y will print the last 2 digits of the year.

echo "We are in the year = $(date +%Y)"

echo "We are in the year = $(date +%y)"

133

echo "We are in the month = $(date +%B)"

Difference between %A and %a is, %A will print full Weekday name while %a will print abbreviated weekday

name.

echo "Current Day of the week = $(date +%A)"

echo "Current Day of the week = $(date +%a)"

echo "Date using %D = $(date +%D)"

echo "Date using %F = $(date +%F)"

echo "current time in 24 hour format = $(date +%T)"

echo "current time in 12 hour format = $(date +%r)"

Print yesterday's date and time.

echo "Yesterday = $(date -d "Yesterday")"

Print Tomorrow date and time.

Date using %D = 08/15/21

Date using %F = 2021-08-15

current time in 24 hour format = 01:27:46

current time in 12 hour format = 01:27:47 AM

134

echo "tomorrow = $(date -d "tomorrow")"

Find what is the date and time before 10 days from now.

echo "Before 10 days = $(date -d "tomorrow -10 days")"

Find last month and next month

echo "Last month = $(date -d "last month" "%B")"

echo "Next month = $(date -d "next month" "%B")"

Find last year and next year

echo "Last Year = $(date -d "last year" "+%Y")"

echo "Next Year = $(date -d "next year" "+%Y")"

Command:

ls -lai /

Description:

Get the number of inodes of files in a directory (root directory)

Command:

sudo du --inode /

Description:

135

Get the total number of inodes in the root directory

Command:

ss -o state established '(sport = :http or sport = :https)'

Description:

Get the list of all clients connected to HTTP (Port 80) or HTTPS (Port 443)

Command:

ss -tn src :80 or src :443

Description:

List the numerical port numbers

Command:

sudo yum install putty

Description:

136

Install PuTTy on CentOS

Command:

sudo watch netstat -tulpn

Description:

Watch TCP and UDP Open Ports in Real-Time

Command:

sudo watch ss –tulpn

Description:

Watch TCP and UDP Open Ports in Real-Time

Command:

timeout 5s ping google.com

137

Description:

Timeout a ping command after 5 seconds

Command:

yum install curl

Description:

Install curl on CentOS

Command:

Description:

List all UDP Connections

Command:

ss -ua

138

Description:

List all Listening UDP Connections

Command:

ss -p

Description:

Display the Process IDs related to socket connections

Command:

ss -4

Description:

Display IPv4 and IPv6 Socket Connections

ss -lu

139

Command:

ss -6

Description:

Display IPv6 connections

Command:

ss -at '(dport = :22 or sport = :22)'

Description:

Filter Connections by Port Number

"The only way to learn a new programming language is by writing

programs in it."

−Dennis Ritchie

140

[manju@localhost ~]$ echo {a..z}

a b c d e f g h i j k l m n o p q r s t u v w x y z

[manju@localhost ~]$ echo {z..a}

z y x w v u t s r q p o n m l k j i h g f e d c b a

[manju@localhost ~]$ echo {05..12}

05 06 07 08 09 10 11 12

[manju@localhost ~]$ echo {12..5}

12 11 10 9 8 7 6 5

[manju@localhost ~]$ echo {12..05}

12 11 10 09 08 07 06 05

[manju@localhost ~]$ echo {x..z}{1..3}

x1 x2 x3 y1 y2 y3 z1 z2 z3

[manju@localhost ~]$ echo {0..10..2}

0 2 4 6 8 10

[manju@localhost ~]$ for i in {a..z..5}; do echo -n $i; done

afkpuz

[manju@localhost ~]$ echo {005..10}

005 006 007 008 009 010

mkdir 20{09..11}-{01..12}

Create directories to group files by month and year

141

[manju@localhost ~]$ cut -d, -f2,1 <<<'Albert,Bob,John'

Albert,Bob

[manju@localhost ~]$ cut -d, -f2,2 <<<'Albert,Bob,John'

Bob

[manju@localhost ~]$ cut -d, -f2,3 <<<'Albert,Bob,John'

Bob,John

[manju@lo

W X Y

[manju@lo

calhost ~]$ x="W

Z

calhost ~]$ x="W

X

X

Y

Y

Z"; echo "$x"

Z"; echo $x

W X Y Z

142

[manju@localhost ~]$ ls *.txt; echo $_

12.txt 1.txt 2.txt abc.txt my.txt phy.txt

13.txt 24.txt 3.txt marks.txt names.txt mphy.txt

Coding theory is a branch of mathematics and computer
science that studies the design, analysis, and application of
codes for the purpose of error detection, correction, and
confidentiality in communication, storage, and other
information processing systems. It involves the study of
methods for encoding data into codes that are resilient to
errors and noise that may occur during transmission or
storage, as well as methods for decoding received codes to
recover the original data. Coding theory has applications in
various fields, including telecommunications, computer
networks, data storage, and cryptography.

echo $x and echo "$x" yield different results

Quoting a variable preserves whitespace

[manju@localhost ~]$ let x=20+7; echo "The value of \"x\" is $x."

The value of "x" is 27.

[manju@localhost ~]$ x=100; let "x += 1"; echo "x = $x"

x = 101

[manju@localhost ~]$ x="a+b+c"; IFS=+; echo $x

a b c

[manju@localhost ~]$ x="a-b-c"; IFS=-; echo $x

a b c

[manju@localhost ~]$ x="a,b,c"; IFS=,; echo $x

a b c

The "+" sign will be interpreted as a separator

The "- " sign will be interpreted as a separator

The "comma" will be interpreted as a separator

free | grep Mem | awk '{ print $4 }'

Display the unused RAM memory

du -ach

Display (disk) file usage

readelf -h /bin/bash

Display information and statistics about a designated elf binary

[manju@localhost ~]$ expr 5 * 2 + 3

13 # 10 + 3

[manju@localhost ~]$ expr 5 * \(2 + 3 \)

25 # 5 * 5

143

[manju@localhost ~]$ echo -e "\033[4mAlbert Einstein.\033[0m"

Albert Einstein.

[manju@localhost ~]$ echo -e "\033[1mAlbert Einstein.\033[0m"

Albert Einstein.

[manju@localhost ~]$ echo -e '\E[34;47mAlbert Einstein'; tput sgr0

Albert Einstein

[manju@localhost ~]$ echo -e '\E[33;44m'"Albert Einstein"; tput sgr0

Albert Einstein

[manju@localhost ~]$ echo -e '\E[1;33;44m'"Albert Einstein"; tput sgr0

Albert Einstein

 [manju@localhost ~]$ x=2; y=3; echo $((2*$x + 3*$y))

13

[manju@localhost ~]$ x=2; y=3; echo $((2*x + 3*y))

13

[manju@localhost ~]$ let x=2+3 y=3+2; echo $x $y

5 5

144

Command:

sdiff phy.txt score.txt

Description:

Show Difference between Two Files (phy.txt and score.txt)

Command:

history -c

Description:

Delete or clear all the entries from bash history

Command:

ping -c 5 www.google.com

Description:

The ping test will stop after sending 5 packets

145

 # count number of lines in each .txt file

 ls *.txt | xargs wc -l

 # count number of words in each .txt file

 ls *.txt | xargs wc -w

 # count number of characters in each .txt file

 ls *.txt | xargs wc -c

 # count lines, words and characters in each .txt file

 ls *.txt | xargs wc

Command:

lslogins –u

Description:

Displays user accounts

146

Command:

systemctl list-units --type=service

Description:

List all loaded services on your system (whether active; running, exited or failed)

Command:

systemctl --type=service

Description:

List all loaded services on your system (whether active; running, exited or failed)

Command:

systemctl list-units --type=service --state=active

147

Description:

List all loaded but active services

Command:

systemctl --type=service --state=active

Description:

List all loaded but active services

Command:

systemctl list-units --type=service --state=running

Description:

List all running services (i.e., all loaded and actively running services)

Command:

148

systemctl --type=service --state=running

Description:

List all running services (i.e., all loaded and actively running services)

#scan a single port

nc -v -w 2 z 192.168.56.1 22

scan multiple ports

nc -v -w 2 z 192.168.56.1 22 80

scan range of ports

nc -v -w 2 z 192.168.56.1 20-25

Command:

cat /etc/resolv.conf

Description:

Find out your DNS Server IP address

149

Command:

less /etc/resolv.conf

Description:

Find out your DNS Server IP address

Command:

findmnt --poll --mountpoint /mnt/test

Description:

Monitor mount, unmount, remount and move actions on a directory (i.e., on /mnt/test)

Command:

uptime -p

Description:

Check Linux Server Uptime

150

Command:

uptime –s

Description:

Check Linux Server Starting Time

Command:

uptime –h

Description:

Display uptime's version information

Command:

grep -o -i Justin score.txt | wc –l

Description:

Count the number of times "Justin" appears in the file (score.txt)

151

Command:

crontab -r

Description:

Delete all crontab jobs

ADD=$((1 + 2))

echo $ADD

3

MUL=$(($ADD * 5))

echo $MUL

15

SUB=$(($MUL - 5))

echo $SUB

10

DIV=$(($SUB / 2))

echo $DIV

5

MOD=$(($DIV % 2))

echo $MOD

1

152

Command:

expr length "This is myw3schools.com"

Description:

Find the length of a string (This is myw3schools.com)

echo '3+5' | bc

8

awk 'BEGIN { a = 6; b = 2; print "(a + b) = ", (a + b) }'

(a + b) = 8

Command:

factor 10

Description:

Decompose an integer (10) into prime factors

153

Command:

ps -e

Description:

Display every active process on a Linux system

Command:

ps -x

Description:

Display User Running Processes

Command:

ps -fU manju

Description:

154

Display a user's processes by user name (manju)

Command:

ps -fu 1000

Description:

Display a user's processes by real user ID (RUID)

Command:

ps -U root -u root

Description:

Display every process running with root user privileges (real and effective ID)

echo -e "The following users are logged on the system:\n\n $(who)"

manju :0 Aug 15 03:31 (:0)

manju pts/1 Aug 15 03:32 (:0)

155

date +%d\-%m\-%Y

Display the current date in DD-MM-YY format

date +%m\/%d\/%Y

Display the current date in MM/DD/YYYY format

date -d "-7 days"

Display the date 7 days before current date

date -d "7 days"

Display the date 7 days after current date

ls -a ~/

Display all files − including the hidden files

[manju@localhost ~]$ gnome-calculator -s 23500*10%

2350

23500 ×
10

100
 = 2350

shuf -i 1-5 -n 5

This command produces numbers, in this case

will generate 5 numbers between 1 and 5.

156

[manju@localhost ~]$ shuf -i 1-5 -n 5 | awk '{ sum+=$1;print $1} END {print "Sum";print sum}'

4

5

2

3

1

Sum

15

[manju@localhost ~]$ find ./ -name "*.zip" -type f

./1.zip

./––encrypt.zip

./my.zip

Find File with .zip extension

find -type f -mtime 0

Find files updated in the last 24 hours

find -type f -newermt `date +%F`

Find files updated today

find -type f -newermt `date +%F -d yesterday`

Find files modified by yesterday

find -type f -mtime -3

Find files updated in the last 72 hours

157

find -type f -newermt 2021-03-01

Find files modified after March 1, 2021

find -type f -newermt `date +%F -d -3hours`

Find files updated in the last 3 hours

find -type f -mmin -180

if [15 -gt 25]

then

 echo "True"

else

 echo "False"

fi

Output:

False

for i in 1 2 3 4 5

do

echo "Albert"

done

Output:

Albert

Albert

Albert

Albert

Shell Scripting

158

if test 5 -eq 6

then

echo "True"

else

echo "False"

fi

Output:

False

yum deplist httpd

List dependencies of a package "apache"

yum reinstall httpd

Reinstall (corrupted) package "apache"

[manju@localhost ~]$ echo "i=3;++i" | bc

4

[manju@localhost ~]$ echo "i=3;--i" | bc

2

[manju@localhost ~]$ echo "i=4;i" | bc

4

help cd

Display the complete information about the cd command

help -d cd Display the short description about the cd command

159

help -s cd

Display the syntax of the cd command

mkdir -m a=rwx myfiles

 Create the myfiles directory, and set its file mode (-m) so that

all users (a) may read (r), write (w), and execute (x) it.

whatis -w make*

Display the use of all commands which start with make

who -d -H

Print out the list of all dead processes

finger -s manju

Display login details and IDLE status about an user "manju"

last -F

Display the login and logout time including the dates

locate --regex -i "(\.mp3|\.txt)"

Search for all .mp3 and .txt files on your system and ignore case

160

systemctl -l -t service | less

List all Systemd services

locate "*.txt" -n 20

Display 20 results for the searching of file ending with .txt

locate -c [.txt]*

Count files ending with .txt and display the result

ls -l . | egrep -c '^-'

Count the number of files within a current directory

du -kx | egrep -v "\./.+/" | sort -n

Search for the largest directories

ls -al --time-style=+%D | grep `date +%D`

List today's files only

find . -name '*.gz'

Find all the gzip archives in the present working directory

du -hsx * | sort -rh | head -10

Check the top 10 files that are eating out your space

161

mpstat

Display processor and CPU statistics

mpstat -P ALL

Display processor number of all CPUs

mpstat 1 5

This command will print 5 reports with 1 second time interval

[manju@localhost ~]$ printf "%s\n" "Albert Einstein"

Albert Einstein

find . -size 0k

Find all empty files in current directory

ls -F | grep / | wc -l

Count the number of directories in a directory

fdisk -s /dev/sda

Display the size of the disk partition in Linux

x=HelloWorld;

echo `expr substr $x 6 10`

Output: World

Extract the substring

162

Command:

sh <(curl https://nixos.org/nix/install) --daemon

Description:

Install Nix Package Manager in Linux

Command:

locale

Description:

View System Locale in Linux

Command:

Description:

locale -a

163

Display a list of all available locales

cat score.txt

Justin-40

cat score.txt | tr [:lower:] [:upper:]

JUSTIN-40

cat score.txt | tr [a-z] [A-Z] >output.txt

cat output.txt

JUSTIN-40

cat domainnames.txt

www. google. com

www. fb. com

www. mactech. com

cat domainnames.txt | tr -d ''

www.google.com

www.fb.com

www.mactech.com

Remove the

spaces in the

domain names

164

cat domainnames.txt

www.google.....com

www.fb.com

www.mactech.Com

cat domainnames.txt | tr -s ''

www.google.com

www.fb.com

www.mactech.Com

echo "My UID is $UID"

My UID is 0

echo "My UID is $UID" | tr " " "\n"

My

UID

is

0

echo "myw3schools.com =>Linux-Books,Src,Tutorials" | tr " " ":"

myw3schools.com:=>Linux-Books,Src,Tutorials

Command:

A space into a " : " character

165

!sud

Description:

Re-execute previously used command

Command:

!sudo

Description:

Re-execute previously used command

Command:

cut -d: -f1 < /etc/passwd | sort | xargs

Description:

166

Generate a compact list of all Linux user accounts on the system

Command:

Description:

View multiple compressed files (phy.txt.gz and myfiles.txt.gz)

Command:

Description:

Find all php files in a directory

Command:

zcat phy.txt.gz myfiles.txt.gz

find . -type f -name "*.php"

mkdir /tmp/DOCUMENTS

Create a directory 'DOCUMENTS' under "/tmp" directory

167

find . -type f -perm 0777 -print

Description:

Find all the files whose permissions are 777

Command:

find / -type f ! -perm 777

Description:

Find all the files without permission 777

Command:

find / -perm /g=s

Description:

Find all SGID set files

Command:

168

find / -perm /a=x

Description:

Find all Read-Only files

Command:

Description:

Find all Executable files

Command:

find / -perm /u=r

[manju@localhost ~]$ echo "ALBERT" | awk '{print tolower($0)}'

albert

Convert text from upper case to lower case

169

find . -type f -name "*.txt" -exec rm -f {} \;

find . -type f -name "*.mp3" -exec rm -f {} \;

Description:

Find and remove phy.txt File

Command:

Description:

To find and remove multiple .txt files

Command:

Description:

find . -type f -name "phy.txt" -exec rm -f {} \;

[manju@localhost ~]$ echo "Phone number: 55602369" | tr -cd [:digit:]

55602369

Get the digits from string

170

find /tmp -type d -empty

find /tmp -type f -name ".*"

To find and remove multiple .mp3 files

Command:

Description:

Find all Empty Directories

Command:

Description:

File all Hidden Files

Command:

[manju@localhost ~]$ echo "Phone number: 55602369" | tr -d [:digit:]

Phone number:
Remove all digits from string

171

find / -mtime 50

Description:

Find Last 50 Days Modified Files

Command:

find / -atime 50

Description:

Find Last 50 Days Accessed Files

Command:

find / -cmin -60

Description:

172

Find Changed Files in Last 1 Hour

Command:

Description:

Find Modified Files in Last 1 Hour

Command:

Description:

Find Accessed Files in Last 1 Hour

Command:

find / -mmin -60

find / -amin -60

Command:

type cat

Description:

Identifies whether the "cat" command is a shell built-in command, subroutine, alias, or keyword.

173

find / -size 50M

Description:

Find all 50MB files

Command:

find / -type f -size +100M -exec rm -f {} \;

Description:

Find and Delete 100MB Files

Command:

find / -type f -name *.mp3 -size +10M -exec rm {} \;

Description:

Find all .mp3 files with more than 10MB and delete them

174

ls -l --color

List the files in current directory (with colorized output)

info df

Loads the "df "info page

ls /usr/include

List the Header files for compiling C programs

ls /usr/local

List the Locally installed files

ls /usr/bin/d*

List all files whose names begin with the letter "d" in the /usr/bin directory

[manju@localhost ~]$ ls [a-h]*

all DICT file1 file2 file34.txt file.md foo1.txt

allfiles.txt echo file123.txt file23.txt file3.txt first.bash

bu.txt file file1.txt file2.txt FILE.backup first.txt

[manju@localhost ~]$ ls .b*

.bash_history .bash_logout .bash_profile .bashrc

[manju@localhost ~]$ touch hello.cpp; touch hello.f99

[manju@localhost ~]$ ls *.?[9p]?

hello.cpp hello.f99

175

ls /usr

List the /usr directory

ls ~ /usr

List the user's home directory and the /usr directory

[manju@localhost ~]$ echo f*

file file1 file123.txt file1.txt file2 file23.txt file2.txt file34.txt file3.txt

file.md first.bash first.txt foo1.txt

[manju@localhost ~]$ echo f*.txt

file123.txt file1.txt file23.txt file2.txt file34.txt file3.txt first.txt foo1.txt

sudo vim myfiles.txt

Open a file "myfiles.txt" using Vim editor

[manju@localhost ~]$ for ((i=0;i<8;i++)); do echo $((i)); done

0

1

2

3

4

5

6

7

Display any file beginning with "f"

Display any file beginning with "f" followed by

any characters and ending with ".txt"

176

Command:

cat /proc/sys/fs/file-max

Description:

Find Linux Open File Limit

Command:

ulimit -Hn

Description:

Check Hard Limit in Linux

Command:

ulimit -Sn

Description:

Check Soft Limits in Linux

177

Command:

timedatectl status

Description:

Display the current time and date on your system

Command:

timedatectl list-timezones

Description:

View all available timezones

Command:

timedatectl list-timezones | egrep -o "Asia/B.*"

timedatectl list-timezones | egrep -o "Europe/L.*"

timedatectl list-timezones | egrep -o "America/N.*"

178

Description:

Find the local timezone according to your location

Command:

timedatectl set-timezone "Asia/Kolkata"

Description:

Set your local timezone in Linux

Command:

swapon --summary

Description:

View a summary of swap space usage by device

Command:

179

cat /proc/swaps

Description:

Check swap usage information

start recording of Linux terminal

script history_log.txt

Script started, file is history_log.txt

exit

Script done, file is history_log.txt

Command:

dir -shl

Description:

180

List files and their allocated sizes in blocks

Command:

less /proc/sys/dev/cdrom/info

Description:

Display information about CD-ROM

while true; do date >> date.txt ; sleep 5 ; done &

cat date.txt

Mon Aug 16 03:05:36 PDT 2021

Mon Aug 16 03:05:41 PDT 2021

Mon Aug 16 03:05:46 PDT 2021

Mon Aug 16 03:05:51 PDT 2021

 "Don't write better error messages, write code that doesn't need them."

− Jason C. McDonald

181

[manju@localhost ~]$ echo hello > 1.txt

[manju@localhost ~]$ echo world > 2.txt

[manju@localhost ~]$ echo program > 3.txt

[manju@localhost ~]$ cat 1.txt

hello

[manju@localhost ~]$ cat 2.txt

world

[manju@localhost ~]$ cat 3.txt

program

[manju@localhost ~]$ cat 1.txt 2.txt 3.txt

hello

world

program

[manju@localhost ~]$ cat 1.txt 2.txt 3.txt >all

[manju@localhost ~]$ cat all

hello

world

program

ls -lrS /etc

List the biggest file in /etc

strings /usr/bin/passwd

Display the readable character strings from the /usr/bin/passwd

182

cat /etc/passwd >> myfiles.txt

Create a file named myfiles.txt that contains the contents of myfiles.txt followed by the contents of /etc/passwd

[manju@localhost ~]$ ls /etc/*.conf

/etc/asound.conf /etc/kdump.conf /etc/radvd.conf

/etc/autofs.conf /etc/krb5.conf /etc/request-key.conf

/etc/autofs_ldap_auth.conf /etc/ksmtuned.conf /etc/resolv.conf

/etc/brltty.conf /etc/ld.so.conf /etc/rsyncd.conf

/etc/cgconfig.conf /etc/libaudit.conf /etc/rsyslog.conf

/etc/cgrules.conf /etc/libuser.conf /etc/sestatus.conf

/etc/cgsnapshot_blacklist.conf /etc/locale.conf /etc/sos.conf

/etc/chrony.conf /etc/logrotate.conf /etc/sudo.conf

/etc/dleyna-server-service.conf /etc/man_db.conf /etc/sudo-ldap.conf

/etc/dnsmasq.conf /etc/mke2fs.conf /etc/sysctl.conf

/etc/dracut.conf /etc/mtools.conf /etc/tcsd.conf

/etc/e2fsck.conf /etc/nfsmount.conf /etc/updatedb.conf

/etc/fprintd.conf /etc/nsswitch.conf /etc/usb_modeswitch.conf

/etc/fuse.conf /etc/ntp.conf /etc/vconsole.conf

/etc/GeoIP.conf /etc/numad.conf /etc/wvdial.conf

/etc/host.conf /etc/oddjobd.conf /etc/yum.conf

/etc/idmapd.conf /etc/pbm2ppa.conf

/etc/ipsec.conf /etc/pnm2ppa.conf

Display configuration files located in /etc

ls /dev/sd*

/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 Display SATA device files

183

echo Hello || echo Hi ; echo World

echo \$USER

$USER

echo -e "2+2\t=4" ; echo -e "12+12\t=24"

echo Hello ; echo World

2+2 =4

12+12 =24

Hello

World

echo Hello && echo World

Hello

World

Hello

World

rm myfiles.txt && echo It worked! || echo It failed!

It worked!

rm files.txt && echo It worked! || echo It failed!

rm: cannot remove ‘files.txt’: No such file or directory

It failed!

pwd ; pwd

/home/manju

/home/manju

Execute the pwd command twice

184

a=$(pwd)

echo "Current working directory is : $a"

/home/manju

Command:

echo *.jpeg

Description:

Print all .jpeg files

Command:

echo 'linux' | fold -w1

Description:

Break down a word (linux) into individual

185

l

i

n

u

x

Command:

find . -user root

Description:

Output the files with respect of the user (root) owned files in the current directory

Command:

strace pwd

Description:

Trace a command (pwd) execution

186

534

Command:

Description:

Display specific User (manju) process details

top -u manju

3 characteristics of big data:

 Volume — How much data is there?

 Variety — How diverse is different types of data?

 Velocity — At what speed is new data generated?

[manju@localhost ~]$ netstat -plunt

print all listening ports

[manju@localhost ~]$ netstat -plunt | grep 8080

check if server is listening on port 8080 or not

[manju@localhost ~]$ netstat -s

list statistics of all ports

187

[manju@localhost ~]$ cat myfiles.txt

Hello World

[manju@localhost ~]$ cat myfiles.txt | tr ' ' '\n'

Hello

World

find /etc > 12.txt

Find all files in /etc and place the list in 12.txt

find . -newer file1.txt

Find files that is newer than file1.txt

[manju@localhost ~]$ date +'%A %d-%m-%Y'

Tuesday 19-04-2022

[manju@localhost ~]$ date -d '2022-04-01 + 2000000000 seconds'

Thu Aug 16 03:33:20 PDT 2085

find . -name "*.txt"

Find files that end in .txt in the current directory and all subdirectories

find /etc -type f -name '*.txt' | wc -l

Print the number of .txt files in /etc and all its subdirectories

[manju@localhost ~]$ cat myfiles.txt

Hello World

[manju@localhost ~]$ grep -E 'o*' myfiles.txt

Hello World

[manju@localhost ~]$ grep -E 'o+' myfiles.txt

Hello World

188

[manju@localhost ~]$ echo Albert Einstein | sed 's/Albert/&&/'

AlbertAlbert Einstein

[manju@localhost ~]$ echo Albert Einstein | sed 's/Einstein/&&/'

Albert EinsteinEinstein

[manju@localhost ~]$ echo -e 'Albert\tis\tScientist'

Albert is Scientist

[manju@localhost ~]$ echo -e 'Albert\tis\tScientist' | sed 's_\s_ _g'

Albert is Scientist

[manju@localhost ~]$ echo Albert | sed 's_\(Alb\)_\1ert_'

Albertert

[manju@localhost ~]$ echo Albert | sed 's_\(Alb\)_\1ert \1_'

Albert Albert

[manju@localhost ~]$ cat myfiles.txt

Hello World

[manju@localhost ~]$ cat myfiles.txt | sed 's/ll\?/A/'

HeAo World

189

echo Albert `echo -n Einstein`

[manju@localhost ~]$ cat myfiles.txt

Hello World

[manju@localhost ~]$ cat myfiles.txt | sed 's/l\{2\}/A/'

HeAo World

Albert Einstein

[manju@localhost ~]$ test 50 -gt 15 ; echo $?

0

[manju@localhost ~]$ test 5 -gt 15 ; echo $?

1

[manju@localhost ~]$ test 5 -lt 15 ; echo $?

0

[manju@localhost ~]$ test 50 -gt 15 && echo true || echo false

true

[manju@localhost ~]$ test 5 -gt 15 && echo true || echo false

false

True: 50 is greater than 15

False: 5 is not greater than 15

True: 5 is lesser than 15

190

[manju@localhost ~]$ a=2; b=a; eval c=\$$b; echo $c

2

[manju@localhost ~]$ [50 -gt 15] && echo true || echo false

true

[manju@localhost ~]$ [5 -gt 15] && echo true || echo false

false

[manju@localhost ~]$ [100 -gt 10 -a 100 -lt 150] && echo true || echo false

true

[manju@localhost ~]$ [100 -gt 10 -a 100 -lt 15] && echo true || echo false

false

[manju@localhost ~]$ date

Tue Apr 19 02:55:39 PDT 2022

[manju@localhost ~]$ date --date="1 week ago"

Tue Apr 12 02:55:05 PDT 2022

191

Command:

uname –or

Description:

Find Out Linux Kernel Version

Command:

uname -a

Description:

Print linux system information

Command:

cat /proc/version

Description:

Display some of your system information including the Linux kernel version

192

Command:

cat /etc/centos-release

Description:

Find Out Linux Distribution Name and Release Version

Command:

fuser .

Description:

Displays the PIDs of processes currently accessing your current working directory

Command:

193

fuser -v -m .bashrc

Description:

Determine which processes are accessing your ~.bashrc file

Command:

sudo fuser --list-signals

Description:

Displays all the possible signals that can be used with the fuser tool

Command:

sudo fuser -k -HUP /boot

Description:

Sends the HUP signal to all processes that have your /boot directory open

194

Command:

Description:

List all the files with the file permissions, the number of links to that file, the owner of the file, the group of the

file, the file size in bytes, the file's last modified datetime and the file name

Command:

Description:

Shutdown the system at 23:55 today

Command:

Description:

Run updatedb at 23:55 today

ls -al

Creates and updates the database of file

names used by locate

echo "shutdown -h now" | at -m 23:55

echo "updatedb" | at -m 23.55

Everyone can now read the file

chmod a+r myfiles.txt

Everyone can now read and write the file

chmod a+rw myfiles.txt

Others (not the owner, not in the same group of the

file) cannot read, write or execute the file

chmod o-rwx myfiles.txt

195

Command:

Description:

Execute command "ls -al" and print the result to the standard output

Command:

Description:

Display the top 15 processes sorted by memory use in descending order

Command:

Description:

Redirect the output to a file (report.txt) for later inspection

echo $(ls -al)

top -b -o +%MEM | head -n 22

top -b -o +%MEM | head -n 22 > report.txt

196

Command:

ps -eo pid,ppid,cmd,%mem,%cpu --sort=-%mem | head

Description:

Check Top Processes sorted by RAM or CPU Usage in Linux

Command:

find . -type f \(-name "*.sh" -o -name "*.txt" \)

Description:

Find all files in the current directory with .sh and .txt file extensions

Command:

find . -type f \(-name "*.sh" -o -name "*.txt" -o -name "*.c" \)

Description:

Find all files in the current directory with .sh, .c and .txt file extensions

197

Description:

Find files edited more than 3 days ago.

Command:

find . -type f -mtime +3

Description:

Find files edited in the last 24 hours.

Command:

find . -type f -mtime -1

Description:

Find files that have more than 100 characters (bytes) in them.

Command:

find . -type f -size +100c

198

Description:

Find files bigger than 100 KB but smaller than 1 MB.

Command:

find . -type f -size +100k -size -1M

Description:

Deletes all the files edited in the last 24 hours.

Command:

find . -type f -mtime -1 -delete

Description:

List all files including hidden files.

Command:

199

ls -a

Description:

List Files and Directories with "/" Character at the End.

Command:

ls -F

Description:

List Files in Reverse Order.

Command:

ls -r

Description:

Sort Files by File Size.

200

Command:

ls -lS

Description:

List Files with an inode number.

Command:

ls -i

Description:

Check the version of the ls command.

Command:

ls --version

Description:

List files under directory /tmp.

201

Command:

ls -l /tmp

Description:

Display UID and GID of files and directories.

Command:

ls -n

Description:

Find all 30 MB files.

Command:

find / -size 30M

202

Description:

Find files with sizes between 100 - 200MB.

Command:

find / -size +100M -size -200M

Description:

List directories larger than 20 KB.

Command:

find / -type d -size +20k

Description:

Find empty files and directories.

Command:

find ./ -type f -size 0

203

Description:

List files modified within the last 17 hours.

Command:

find . -mtime -17 -type f

Description:

*** List directories modified within the last 10 days.***

Command:

find . -mtime -10 -type d

Description:

List all files modified between 6 and 15 days ago in the home directory.

Command:

204

find /home -type f -mtime +6 -mtime -15

Description:

Display files with permission 777.

Command:

find -perm 777

Description:

List files owned by a user (manju).

Command:

find /home -user manju

Description:

Find all text files owned by user "manju".

205

Command:

find /home -user manju -iname "*.txt"

Description:

Find and list files and directories together with their permissions.

Command:

find -name "*.conf" | ls -l

Description:

List directories only.

Command:

ls -d */

Description:

List multiple files on a single line.

206

Command:

ls --format=comma

Description:

View the process of a specific user "manju".

Command:

ps -u manju

Description:

Execute a previous command starting with a specific letter "c".

Command:

!c

207

Description:

Display BIOS information (You need elevated permissions to run this).

Command:

dmidecode -t 0

Description:

Display CPU information (You need elevated permissions to run this).

Command:

dmidecode -t 4

Description:

View all the system logs.

Command:

gnome-system-log

208

Description:

Identify SSH Client Version.

Command:

ssh -V

Description:

Display total connect time of users.

Command:

ac –d

Description:

Display connect time for all the users.

Command:

209

ac -p

Description:

Diaplay connect time report for a specific user "manju".

Command:

ac -d manju

Description:

Display the modules compiled inside Apache.

Command:

httpd -l

Description:

*** View Processes Owned by Current User.***

210

Command:

ps U $USER

Description:

Display the information about the filesystem Type.

Command:

df -Tha

Description:

Display Active Connections with Process ID and Program Name.

Command:

netstat -tap

Description:

Display RAW network statistics.

211

Command:

netstat --statistics --raw

LILO (Linux Loader)

Linux User Mode

Command Line Interface
Graphical user interface

Load Linux into memory and start the OS

The maximum length for a filename under

Linux is 255 bytes.

Logical Volume Manager (LVM)

Manage hard drives and other

storage devices on linux

212

[manju@localhost ~]$ PS1="Please enter a command: "

Please enter a command: date

Thu Apr 21 20:51:19 PDT 2022

Please enter a command: cal

 April 2022

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

Please enter a command:

[manju@localhost ~]$ ls /var/spool

abrt abrt-upload anacron at cron cups lpd mail plymouth postfix

[manju@localhost ~]$ ls /usr/share/man

ca en hu ko man1x man3p man5 man7 man9 pl ro tr zh_TW

cs es id man0p man2 man3x man5x man7x man9x pt ru uk

da fr it man1 man2x man4 man6 man8 mann pt_BR sk zh

de hr ja man1p man3 man4x man6x man8x overrides pt_PT sv zh_CN

/var/spool holds spooled files such as those

generated for printing jobs and network transfers

/usr/share/man holds the online Man files

ps -aux | grep 'httpd'

Check for the httpd process

213

[manju@localhost ~]$ ls /etc/gdm

custom.conf Init PostLogin PostSession PreSession Xsession

ls /etc/gconf

List the GConf configuration files

ls /usr/share/gnome

List the files used by GNOME applications

[manju@localhost ~]$ ls /etc/sysconfig

atd firewalld libvirt-guests qemu-ga samba

authconfig grub man-db radvd saslauthd

autofs init modules raid-check selinux

cbq ip6tables-config netconsole rdisc smartmontools

cgred iptables-config network readonly-root sshd

console irqbalance network-scripts rpcbind sysstat

cpupower kdump nfs rpc-rquotad sysstat.ioconf

crond kernel ntpd rsyncd virtlockd

ebtables-config ksm ntpdate rsyslog virtlogd

fcoe libvirtd pluto run-parts wpa_supplicant

ls /etc/rc.d

List the system startup and shutdown files

[manju@localhost ~]$ ls /etc/init.d

functions netconsole network README

List the contents of GDM configuration directory

List the system configuration files

/etc/init.d holds network scripts to start up

network connections

214

Important features of Linux Operating System

 +

 +

Swap space

 Free and Open Source

 Portable and More secure

 Robust and Adaptable

Linux Kernel

Manage RAM memory.

Manage the processor time.

Manage access and use of the various peripherals that are connected to the computer.

The core interface between a computer's

hardware and its processes

A space on a hard disk that is used when the amount of

physical memory (RAM) is full

215

[manju@localhost ~]$ cd /etc

[manju@localhost etc]$ pwd

/etc

[manju@localhost etc]$ cat /etc/hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

chmod u+w myfiles.txt

Add user write privileges

chmod u-w myfiles.txt

Remove user write privileges

chmod g+w myfiles.txt

Add group write privileges

chmod g=r myfiles.txt

Allow only the group read privileges

chmod o+x myfiles.txt

Add execute privileges for others

chmod a+x myfiles.txt

Add execute privileges for everyone

chmod a=xr myfiles.txt

Allow read and execute only to everyone

/etc/hosts contains hostnames with their ip address

chmod go-r myfiles.txt

Remove group and others read privileges

216

ps -L 3315

List all threads for a particular process (with process ID 3315)

ps aux --sort pmem

Check the memory status

awk '/Hello/' myfiles.txt

Find "Hello" in myfiles.txt

awk -F: '{ print $1 }' /etc/passwd | sort

Display a sorted list of the login names of all users

awk 'END { print NR }' myfiles.txt

Counts lines in myfiles.txt

[manju@localhost ~]$ awk 'BEGIN { for (i = 1; i <= 7; i++) print int(101 * rand()) }'

24

29

85

15

59

19

81

Prints seven random numbers from zero to 100

ls -lg *.txt | awk '{ x += $5 } ; END {print "total bytes:" x }'

Prints the total number of bytes used by all .txt files

217

Random-access memory Virtual memory

The internal memory of the CPU for storing

data, program and program result.

A storage area that holds the files on your hard drive

for retrieval when a computer runs out of RAM

Process States in Linux:

 Ready: a new process is created and is ready to run.

 Running: The process is being executed.

 Wait: The process is waiting for input from the user.

 Completed: The process has completed the execution.

 Zombie: The process is terminated but information regarding the process still exists

and is available in the process table.

Cron Anacron

A service that enables us to run scheduled jobs

in Linux/Unix systems every minute.

A service that only enables us to run scheduled jobs

in Linux/Unix systems on daily basis.

Command:

Description:

View system defined cron jobs

Command:

cat /etc/crontab

netstat --listen

218

Description:

Check which ports are in listening in Linux Server

Service Default Port

DNS 53

SMTP 25

FTP 20 (Data transfer), 21 (Connection established)

SSH 22

DHCP 67/UDP (dhcp server), 68/UDP (dhcp client)

squid 3128

Hard Link

A mirror copy of the original file

Soft Link

A symbolic link to the original file

Network Interface Card teaming is the process of combining

multiple network cards together for performance, load balancing

and to increase uptime.

Contains the original content

of the file

Does not contain the actual

content but contains the location

of the original file

219

ls /bin

List the binaries and other executable programs

ls /boot

List the files needed to boot the operating system

ls /dev

List the device files − typically controlled by the operating system and the system administrators

ls /etc

List the System configuration files

ls /lib

List the System Libraries

ls /lib64

List the System Libraries (64 bit)

ls /proc

List the information about running processes

ls /sbin

List the System administration binaries

ls /var/log

List the Log files

mkdir mydir{1,2,3,4,5}

Create 5 new directories:

 mydir1

 mydir2

 mydir3

 mydir4

 mydir5

220

[manju@localhost ~]$ ls -l myfiles.txt

-rw-r--r--. 1 manju nath 12 Apr 19 20:22 myfiles.txt

find . -mtime +1 -mtime -3

Display files that are more than 1 day old − but less than 3 days old in the current directory

find . -name "s*" –ls

Find files that start with the letter "s" and perform the command "ls" on them

 find . -size +3M

Find files that is larger than 3 megabytes

[manju@localhost ~]$ cat myfile.txt

ffff

b

eee

cc

[manju@localhost ~]$ cat myfile.txt | sort

b

cc

eee

ffff

Display the permissions for the file "myfiles.txt"

[manju@localhost ~]$ touch file1; touch file2

[manju@localhost ~]$ ls file{1,2}

file1 file2

[manju@localhost ~]$ NUMLOGINS=$(who | grep $USER | wc -l)

[manju@localhost ~]$ echo You have $NUMLOGINS login sessions

You have 2 login sessions

221

Command:

Description:

Remove read write and execute permissions on the file "myfiles.txt" for the group and others

Command:

Description:

Give read and write permissions on the file "myfiles.txt" to all

Command:

Description:

Repeats the third most recent command

chmod go-rwx myfiles.txt

chmod a+rw myfiles.txt

!-3

[manju@localhost ~]$ echo $OSTYPE

linux-gnu
The current operating system you are using

222

Command:

Description:

Check Inodes on File system

Command:

Description:

Find Inode number of File (myfiles.txt)

Command:

Description:

Check ACL (Access control list) configured on a file (myfiles.txt)

df -i /dev/sda1

ls -il myfiles.txt

getfacl myfiles.txt

SSH (Secure Shell or Secure Socket Shell) is a network protocol that gives users and

system administrators a secure way to access a computer over an unsecured network.

223

3 standard streams in Linux:

Command:

Description:

Check information of disk usage of files and directories on a machine.

Command:

Text terminal

Keyboard

Display

Program

Standard input

(stdin)

Standard output

(stdout)

Standard error

(stderr)

du -sh /var/log/*

ldd /bin/cp

224

Description:

Display dependencies of the "cp" command.

Command:

Description:

Display dependencies of the "cp" command with details.

Command:

Description:

Display unused direct dependencies of the "cp" command.

ldd -v /bin/cp

ldd -u /bin/cp

225

[manju@localhost ~]$ date; cal

Thu Apr 21 19:44:12 PDT 2022

 April 2022

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

[manju@localhost ~]$ date && cal

Thu Apr 21 19:44:21 PDT 2022

 April 2022

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

[manju@localhost ~]$ ls *.c

hello.c vim.c

date command is executed

followed by a cal command

cal command is executed

only if the date command is

successfully executed

[manju@localhost ~]$ ls *.[co]

hello.c hello.o vim.c

-gt Greater than

-lt Lesser than

-ge Greater than or equal to

-le Lesser than or equal to

-eq Equal to

-ne Not equal to

226

[manju@localhost ~]$ a=`ls *.c`; echo $a

hello.c main.c vim.c

[manju@localhost ~]$ test 50 -ge 15 && echo true || echo false

true

[manju@localhost ~]$ test 50 -ge 50 && echo true || echo false

true

[manju@localhost ~]$ test 20 -le 50 && echo true || echo false

true

[manju@localhost ~]$ test 20 -le 20 && echo true || echo false

true

[manju@localhost ~]$ test 30 -eq 30 && echo true || echo false

true

[manju@localhost ~]$ test 320 -eq 30 && echo true || echo false

false

[manju@localhost ~]$ test 30 -ne 30 && echo true || echo false

false

[manju@localhost ~]$ test 320 -ne 30 && echo true || echo false

true

227

cd /home

Takes you to the home directory

cd ..

Takes you one folder back

Command:

cat /proc/mounts

Description:

Display the mounted file system

Command:

cat /proc/net/dev

Description:

Display network adapters and statistics

Command:

telinit 0

Description:

Shutdown the system

ls * [0-9] *

Display the files and folders that contain numbers 0 to 9

228

iconv -l

Display the lists of known ciphers

ls -lSr | more

Display the size of the files and directories ordered by size

du -sk * | sort -rn

Display the size of the files and directories ordered by size

Command:

ls -lh

Description:

Display permissions

Command:

yum list

Description:

List all packages installed on the system

Command:

yum clean packages

Description:

 Clean all the saved packages

229

ip link show

Display the link status of all interfaces

ps -eafw

Display Linux tasks

lsof -p $$

Display a list of files opened by processes

Command:

yum clean all

Description:

Clean all cached information

Command:

yum clean headers

Description:

Clean package headers

Command:

yum clean metadata

Description:

Clean Metadata

230

Command:

find /var -atime -90

Description:

Find files in the /var directory that have not been accessed in the last 90 days

Command:

find / -name core -exec rm {} \;

Description:

Search for core files in the entire directory tree and delete them as found without

prompting for confirmation

Command:

Description:

Check current run level of a Linux server

who -r

231

Bash script:

for i in *linux*; do rm $i; done

Description:

Delete all the files in the current directory that contains the word "linux"

Command:

awk '{print}' myfiles.txt

Description:

Display the content of file (myfiles.txt)

Wait for 5 seconds

sleep 5s

Wait for 5 minutes

sleep 5m

Wait for 5 hours

sleep 5h

Wait for 5 days

sleep 5d

Sleep commands used to introduce

wait time in scripts

232

Command:

ln myfiles.txt hardF1

Description:

Create hard-link to myfiles.txt

Command:

cat hardF1

Description:

Check content of the hard link - hardF1

Command:

ln myfiles.txt softF1

Description:

Create Soft-link to myfiles.txt

Command:

cat softF1

Description:

Check content of the soft link - softF1

233

Foreground processes Background processes

Require a user to start them or to interact

with them.

Run independently of a user.

Command:

ps -p 13

Description:

Display information about the process with process ID – 13

Command:

ulimit -f 100

Description:

Set the file size limit to 51,200 bytes

Command:

lsmod

Description:

234

Find out what kernel modules are currently loaded

Absolute path Relative path

The path of a file or directory from the

root directory.

The path of a file or directory from the

present working directory.

Command:

sudo yum install php

Description:

Install php version 7.2

Command:

php -r 'echo "Hello World\r\n";'

Description:

Run a PHP statement from the command line without creating a file

Command:

php -a

Description:

Start a PHP interactive shell

235

man -a ls

Display all man Pages of the ls command

man -k ls

Allows users to search the short command descriptions and manual page names for ls command

man -w ls

Displays the location of the manual page of the ls command

Command:

yum install man

Description:

Install man package in Centos

Command:

du -h -d 1 /

Description:

Display disk usage of all top-level directories

Command:

man -f ls

Description:

Display man Pages and Print Short Description of the ls command

236

cat /etc/redhat-release

Display Linux distribution name and version

ls ~

Display the contents of the home directory

ls ../

Display the contents of the parent directory

Command:

ps -U root -u root

Description:

Display all process running under the root user account

Command:

cal -1

Description:

Display current month calendar

Command:

cal -j

Description:

Print the calendar in day numbers

237

ps r

List only running processes on Linux

ps T

List all processes on this current terminal

ps -f

List processes along with the parent process ID associated with the current Terminal

Command:

nmcli connection show

Description:

Display what are the network connection connected in our system

Command:

su

Description:

Used to switch from one account to another

Command:

ps aux | grep 'telnet'

Description:

Searches for the id of the process 'telnet'

238

ps -x

View all processes owned by you

ps -eo pid,ppid,cmd,%mem,%cpu --sort=-%mem

Display the processes using highest memory

sudo yum list --installed | more

Lists installed packages on CentOS

Command:

sudo rpm -qa

Description:

Get a list of all installed packages with rpm command

Command:

sudo rpm -q nginx

Description:

Check whether nginx package installed or not

sudo rpm -qa | more

239

Command:

sudo rpm -q bash

Description:

Check whether bash package installed or not

Command:

sudo yum history

Description:

List all installed packages with yum on CentOS history command

Command:

sudo yum history info 2

Description:

Examine history entries in detail using transaction ID [2]

Command:

file /etc/passwd

Description:

Displays the file type of a given file

[root@localhost manju]# file /etc/passwd

/etc/passwd: ASCII text

240

Command:

wc /etc/passwd

Output:

46 91 2373 /etc/passwd

The /etc/passwd file has 46 lines, 91 words and 2373 letters present in it

Command:

grep root: /etc/passwd

Description:

Display all lines from /etc/passwd containing the string "root"

Command:

grep -n root /etc/passwd

Description:

Display all lines from /etc/passwd containing the string "root" with line numbers

Command:

grep -c false /etc/passwd

Description:

Display the number of accounts that have /bin/false as their shell

241

lastb

Display the last unsuccessful login attempts

du /etc/passwd

Display the disk usage of a /etc/passwd file

killall proc

Kill all the process named proc

wget https://repo.mysql.com/mysql80-community-release-el8-1.noarch.rpm

Download the RPM file to install

sudo yum localinstall mysql80-community-release-el8-1.noarch.rpm

Install the RPM file

Command:

grep ^root: /etc/passwd

Description:

Display all lines from /etc/passwd starting with the string "root" followed by colon

Command:

last | head

Description:

Displays information about the users who logged in and out of the system

(Display the top 10 lines only)

242

sudo yum localinstall https://repo.mysql.com/mysql80-community-release-el7-1.noarch.rpm

Install the RPM package via URL

curl --version

Display curl Version

curl -O http://website.com/myfiles.tar.gz

Download the file (myfiles.tar.gz) from url "http://website.com/myfiles.tar.gz"

Saved as myfiles.tar.gz

curl -o files.tar.gz http://website.com/myfiles.tar.gz

Download the file (myfiles.tar.gz) from url "http://website.com/myfiles.tar.gz"

Saved as files.tar.gz

echo 'https://repo.mysql.com/mysql80-community-release-el8-1.noarch.rpm' > urls.txt

xargs -n 1 curl -O < urls.txt

Download files from a list of URLs in "urls.txt" file

exit 110

Exit from the terminal window

sudo -l

know which commands are permitted and not permitted on the current host

243

Disadvantages of Open Source Operating System:

Command:

Description:

Check all installed packages of ftp

Command:

Description:

Find files in the /home directory which were modified more than 120 days ago

Command:

echo -e "\thello\nworld"

 Difficulty to use

 Compatibility Issues

find /home -mtime +120

 hello
world

history | grep cd | head -12

Searches history of first 12 commands which have cd word match

rpm -qa | grep ftp

244

 The /etc directory contains configuration files in Linux.

 The Network File System (NFS) is a mechanism for storing files on a network.

 "init" is the first process in linux which is started by the kernel and its process id is 1.

Samba enables Linux / UNIX machines to communicate with

Windows machines in a network.

egrep "Hello|Einstein" file.txt

Returns line with Hello or Einstein in the file.txt

date "+%s"

Prints the date in seconds

cat file.txt | uniq

Display duplicate record only once

245

Command:

cd ../../..

Command:

ps -ef | grep xlogo

Description:

List all the processes on the system containing the string 'xlogo'

echo -n "abc";echo "def"

echo "abc";echo "def"

Takes you three folders back

abcdef

abc

def

ls -ltr /etc List the files in /etc in order of last modification

246

cat /etc/passwd /etc/group

Display the contents of multiple files (/etc/passwd and /etc/group)

find /tmp -name *.txt -exec rm -f {} \;

Searches for all files in the /tmp directory named *.txt and deletes them

Command:

ls -Rlh /var | grep [0-9]M

Description:

List the files in /var larger than 1 megabyte but less than 1 gigabyte

Command:

ls -lhS

Description:

List files by size

echo "use" "of" "Linux"

use of Linux

247

watch -n 5 tail -n 3 /etc/passwd

Display the end of the /etc/passwd file every 5 seconds

watch -n 1 'ls -l | wc -l'

Monitor the number of files in a folder

watch -t -n 1 date

Display the clock

find / -name "*.txt"

Search all files with .txt extension

find . -name "*file*"

Search all files containing "file" in the name

find /home -name "*file*"

Search all files in /home containing "file" in the name

grep -nre "hello computer" ./*

Search for files containing the string "hello computer" in the current directory

(echo In Linux; exit 0) && echo OK || echo exit

(echo In Linux; exit 4) && echo OK || echo exit

In Linux

OK

In Linux

exit

248

Command:

free -t -m

Command:

gnome-system-monitor

Description:

Displays what programs are running and how much processor time, memory and disk space are being used

lsblk -m

lsblk -S

Display free memory size in MB

Display device permissions and ownership

Display SCSI (Small Computer Systems Interface) devices

lsblk -n List devices without the header

249

ls -R

 # List out all the contents of subdirectories

compgen -c

Displays the list of all commands which we can use in the command-line interface

hostnamectl

Display system information including operating system, kernel and release version

Command:

ls -l ~

Description:

Check the file and folder permissions

Command:

ls ./Documents

Description:

Display the list of files that reside in the Documents folder

 pwd -L → Prints a symbolic path

 pwd -P → Prints the actual full path

250

Command:

find . -type f

Command:

find . -type d

Description:

Find directories

find . -iname "*.jpg"

find . -type f -perm 777

Find files

Find files by case-insensitive extension (ex: .jpg, .JPG, .jpG)

Find files by octal permission

cd logs; ls -lt | head; du -sh ; df -h

Concatenating all of the above tasks in a

single line using the "; " operator

251

cal; { date; uptime; }; pwd

March 2022

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Tue Mar 29 00:52:38 PDT 2022

 00:52:38 up 54 min, 2 users, load average: 0.00, 0.01, 0.05

/home/manju

{ echo "Albert Einstein"; pwd; uptime; date; }

Albert Einstein

/home/manju

 00:26:53 up 28 min, 2 users, load average: 0.00, 0.01, 0.05

Tue Mar 29 00:26:53 PDT 2022

shutdown -r

Kicks off a reboot

shutdown +0

Shuts down the system immediately

shutdown -r +5

Begins a reboot of the system in five minutes

252

Command:

kill 12838

Command:

ss -t -r state established

Description:

List all the established ports

ss -t -r state listening

mtr google.com

Terminate the process with process ID 12838

List all sockets in listening state

Diagnose Network Issues

sudo tcpdump --list-interfaces

List all network interfaces

shutdown -Fr now

Force the file system check during

reboot

253

 mpstat -P 0

 # Print processor statistics and helps to monitor CPU utilization on the system

 chmod 777 myfiles.txt

 # Assign (read, write and execute) permission to everyone

 chmod 766 myfiles.txt

 # Assign full permission to the owner and read and write permission to group and others

 chmod -x myfiles.txt

 # Remove the execution permission of myfiles.txt file

 history 30

 # List the last 30 commands we have entered on the system

 find ~ -empty

 # Find all empty files in home directory

 gzip -l *.gz

 # Display compression ratio of the compressed file

ls -al --time-style=+%D | grep `date +%D`

List today's files only

254

Command:

ps -efH | more

Command:

df -T

Description:

Display what type of file system

mkdir ~/temp

ls *py

List all Python files

Display the list of all shells

Display details about message queue, semaphore and shared memory

View current running processes in a tree structure

Creates a directory called temp under home directory

chsh -l

ipcs -a

255

 ipcs -s

 # List the accessible semaphores

 ipcs -m

 # List all the Shared Memory

 quotastats

 # Display the report of quota system statistics gathered from the kernel

 rpcinfo

 # Display all of the RPC (Remote Procedure Call) services of the local host

 slabtop

 # Display kernel slab cache information in real-time

 tload

 # Display a graph of the current system load average to the specified tty

ipcs -q

Lists only message queues for which the current process has read access

256

cat /proc/devices

Display the device drivers configured for the currently running kernel

cat /proc/dma

Display the DMA channels currently used

cat /proc/filesystems

Display the file systems configured into the kernel

cat /proc/kmsg

Display the messages generated by the kernel

cat /proc/loadavg

Display the system load average

ls /proc/net

List the network protocols

cat /proc/stat

Display the system operating statistics

cat /proc/uptime

Display the time the system has been up

ls /etc/udev

List the contents of udev configuration directory

257

Command:

poweroff -i -f

[2 = 2] ; echo $?

0 (logically TRUE)

[2 = 6] ; echo $?

1 (logically FALSE)

type echo

echo is a shell builtin

 find /usr -print

Find and print all files under "/usr"

systemctl list-units --type=target

List all target unit configuration

systemctl list-units --type=service

List all service unit configuration

systemctl list-sockets

List all socket units in memory

Shutdown the system

systemctl list-timers

List all timer units in memory

systemctl list-dependencies --all

List dependency of all unit services

systemctl poweroff

Shut down the system

258

 systemctl reboot

 # Shut down and reboot the system

 systemctl suspend

 # Suspend the system

 systemctl hibernate

 # Hibernate the system

 loginctl user-status

 # Display terse runtime status information of the user of the caller's session

 loginctl session-status

 # Display terse runtime status information of the caller's session

 ip route show

 # Display all the routing table in numerical addresses

 ip neigh

 # Display the current content of the ARP (Address Resolution Protocol) cache tables

 netstat -l --inet

 # Find listening ports

netstat -ln --tcp

Find listening TCP ports (numeric)

259

Command:

atq

lsof | grep deleted

Print all deleted files which are claiming disk space

echo $$

Display the Process ID of the current process

echo $!

Display the Process ID of most recently started background job

 date --date="yesterday"

Display yesterday 's date

date --date="10 days ago"

Display date 10 days ago

ls / | wc -w

List the number of directories in the root directory

sudo sfdisk -l -uM

Display the size of each partition in MB

Lists the user's pending jobs

sudo parted -l

Lists out the partition details

df -h | grep ^/dev

Filter out real hard disk partitions/file systems

260

 sudo blkid

 # Displays information about available block devices

 ls / > info.txt

 cat info.txt

bin

boot

dev

etc

home

lib

lib64

media

mnt

opt

proc

root

run

sbin

srv

sys

tmp

usr

var

export NAME="Albert Einstein"

echo $NAME

Albert Einstein

TZ=US/Pacific date

Display the current date/time in US/Pacific time zone

ls -l /etc/shadow

Display the user password stored in an encrypted form and the password expiry data

sudo journalctl --since yesterday

Display all the logs since yesterday

sudo journalctl --since "2019-12-10 13:00:00"

Display all the logs since 2019-12-10 13:00:00

journalctl -disk-usage

Display the total size of the journal logs

261

Command:

ls -m

ls -Q

Add quotation marks to all directories and files

ss -f unix

List Unix Sockets

ss --raw

List Raw Sockets

tracepath www.google.com

Traces a path to a network host (www.google.com) discovering MTU along the path

echo -e "123\b4"

echo -e "123\r456"

echo D*

Lists all of the files and directories in the current directory whose name starts with letter D

Prints out directories and files separated by a comma

124 3 is over-written by 4

456
123 is overwritten by 456

echo *.desktop

Lists all of the .desktop files in the current directory

262

 echo $'I\'m a Linux Learner.'

 echo $USER

 # Print the name of the currently logged in user

 echo -e "\033[0;32mGREEN"

 GREEN

 echo -e "\033[0;31mRED"

 RED

 echo "This is the list of directories and files on this system: $(ls)"

 This is the list of directories and files on this system: Desktop

Documents

Downloads

Music

Pictures

Public

Templates

Videos

I'm a Linux Learner.

echo -e 'Hello, \vWorld!'

Hello,

 World!

263

echo *s

Print all files and folders that end by letter "s"

echo [[:upper:]]*

Print all files and folders that start by upper case character

echo $((2 + 3))

→ 5

echo $(($((2**2)) * 3))

→ 12

echo Four divided by two equals $((4/2))

→ Four divided by two equals 2

echo Capital-{A,B,C}-Letter

→ Capital-A-Letter Capital-B-Letter Capital-C-Letter

echo {1..5}

→ 1 2 3 4 5

echo {A..Z}

→ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

echo x{P{1,2},Q{3,4}}y

→ xP1y xP2y xQ3y xQ4y

264

echo The total price is $500.00

→ The total price is 00.00

echo "$USER $((3*2)) $(cal)"

manju 6 March 2022

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

echo $(cal)

echo "$(cal)"

echo The total price is \$500.00

→The total price is $500.00

March 2022 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

March 2022

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

echo -e "\aMy Laptop shut \"down\"."

→My Laptop shut "down".

echo -e "C:\\WIK2N\\LINUX_OS.EXE"

→ C:\WIK2N\LINUX_OS.EXE

265

sudo lsof -i -P -n | grep LISTEN

sudo netstat -tulpn | grep LISTEN

sudo ss -tulw

Check what ports are open

netstat -ap | grep ssh

Find out on which port a program is running

[root@localhost manju]# ipcs -m -l

------ Shared Memory Limits --------

max number of segments = 4096

max seg size (kbytes) = 18014398509465599

max total shared memory (kbytes) = 18014398442373116

min seg size (bytes) = 1

[root@localhost manju]# ipcs -m -p

------ Shared Memory Creator/Last-op PIDs --------

shmid owner cpid lpid

131072 manju 2998 3135

163841 manju 2998 3135

327682 manju 3277 6920

360451 manju 2827 1406

Check ports in use

Lists the Limits for Inter-process

Communication facility

Display the process ids that accessed

Inter-process Communication facility

recently

266

[root@localhost manju]# ipcs -u

------ Messages Status --------

allocated queues = 0

used headers = 0

used space = 0 bytes

------ Shared Memory Status --------

segments allocated 4

pages allocated 2432

pages resident 319

pages swapped 0

Swap performance: 0 attempts 0 successes

------ Semaphore Status --------

used arrays = 0

allocated semaphores = 0

dmidecode -t baseboard

Display all the system baseboard related information

dmidecode -t bios

Display the BIOS information

Display the status of current usage

of Inter-process Communication facility

dmidecode -t 16

Display the maximum RAM supported by the system

267

Command:

Description:

Display the information about the manufacturer, model and serial number of the system

dmidecode -t system

The Linux philosophy is 'Laugh in the face of danger'. Oops. Wrong One. 'Do it

yourself'. Yes, that's it.

Linus Torvalds

268

nmcli con show -a

Display the active network connections

netstat -r

Display the kernel routing table

yum install nmap

Install nmap on CentOS

nmap google.com

Scan a hostname

nmap 193.169.1.1

Scan a ip address

nmap --iflist

Display host interfaces and routes

echo [![:digit:]]*

Print all files and folders that are not beginning with a numeral

echo *[[:lower:]123]

Print all files and folders ending with a lowercase letter or the numeral

echo g*

Print all files and folders beginning with "g"

269

echo b*.txt

Print all files and folders beginning with "b" followed by any characters and ending with ".txt"

echo [abc]*

Print all files and folders beginning with either "a", "b" or "c"

netstat -t

Display the download status of active connections

netstat -x

Display Information about all connections, listeners and shared endpoints for Network Direct

netstat -n

Numerical display of addresses and port numbers

echo $LANG

Display the language of a Linux system

echo "AAA" | grep AAA

→ AAA

echo "AAA" | grep BBB

→

echo "AAA" | grep -E 'AAA|BBB'

→ AAA

echo "BBB" | grep -E 'AAA|BBB'

→ BBB

270

echo "albert einstein" | tr a-z A-Z

→ ALBERT EINSTEIN

echo "albert einstein" | tr [:lower:] E

→ EEEEEE EEEEEEEE

 echo " Albert Einstein was a German-born theoretical physicist." | fold -w 12

 echo " Albert Einstein was a German-born theoretical physicist." | fold -w 12 -s

 printf "English theoretical physicist: %s\n" Hawking

 → English theoretical physicist: Hawking

Albert Eins

tein was a G

erman-born t

heoretical p

hysicist.

Albert

Einstein

was a

German-born

theoretical

physicist.

271

ls /usr/bin | pr -3 -w 65 | head

Display a directory listing of /usr/bin in a paginated, three-column output format

for i in A B C D; do echo $i; done

for i in {A..D}; do echo $i; done

for i in file*.txt; do echo $i; done

echo ${!BASH*}

List all the variables in the environment with names that begin with BASH

bc <<< "6+6"

A

B

C

D

A

B

C

D

file1.txt

file.txt

12

Scientists=("Einstein" "Hawking" "Darwin"); for i

in ${Scientists[*]}; do echo $i; done

 Einstein

Hawking

Darwin

Scientists=("Einstein" "Hawking" "Darwin"); for i

in "${Scientists[*]}"; do echo $i; done

Einstein Hawking Darwin

272

df -k

Check the file system space

ls -alh

List all folders in directory with details

find /home -name file.txt

Check all files in /home directory with the name file.txt

find /home -iname File.txt

Search all files in /home directory irrespective to case sensitive

 find / -ctime +90

Search for the files which were modified more than 90 days back

find / -size 0c

Search all empty files

find / -size +1G

Search all files and folders which are more than 1GB

df -a

Display the file system's complete disk usage

df -i

Display used and free inodes

df -h
Display disk space in

human-readable format

273

du -ch *.png

Display the size of each png file in the current directory

du -a /etc/ | sort -n -r | head -n 10

List top 10 directories consuming disk space in /etc/

ac

Display the total amount of time users are connected to the system

ac --individual-totals

Display a report on login times for individual users

cancel

Cancels print jobs

yum install finger

Install finger tool (CentOS)

finger manju

Display the details of a user "manju"

chfn

Allows you to modify user's information

finger -s manju

Display idle status and login details of a user "manju"

274

groups

List all Groups the Current User is a Member of

id -nG

List all Groups the Current User is a Member of

groupadd mygroup

Create a new group named "mygroup"

groupdel mygroup

Delete a group named "mygroup"

less /etc/group

List all Groups

getent group

List all Groups

usermod -a -G mygroup manju

Add an existing user "manju" to a group "mygroup"

userdel manju

Delete a user "manju"

chgrp mygroup test.txt

Change the owning group of the file test.txt to the group named "mygroup"

275

sudo depmod -a

Generates a list of all kernel module dependences and associated map files

dirname /usr/bin

→ /usr

dirname /Desktop/root

→ /Desktop

dmesg > kernel_messages.txt

Read all messages from kernel ring buffer to a file "kernel_messages.txt"

dmesg | grep -i memory

Display the kernel messages which relate to memory usage

egrep -c '^Hello|World$' myfiles.txt

Count the number of lines in myfiles.txt which begin with the word 'Hello' or end with the word 'World'

ex myfiles.txt

Edits the file myfiles.txt

expand myfiles.txt

Expand the file myfiles.txt − changing tabs to spaces − and display on standard output

expand --tabs=10 myfiles.txt > myfiles0.txt

Convert the tabs in the file myfiles.txt to 10 spaces each, and write the output to myfiles0.txt

276

expr 2 = 5

0

fc -l

Lists the history of commands

!l

Executes the most recently executed command that begins with the letter "l"

fc -e - l

Executes the most recently executed command that begins with the letter "l"

fmt myfiles.txt

Display a reformatted version of the file "myfiles.txt "

fmt < myfiles.txt > myfiles0.txt

Reformat "myfiles.txt" and write the output to the file "myfiles0.txt"

finger -p manju

Display information about the user "manju"

fold -w5 myfiles.txt > myfiles0.txt

Wrap the lines of myfiles.txt to a width of 5 characters and writes the output to myfiles0.txt

for file in *.txt ; do wc -l $file ; done

Performs a word count of all files in the current directory with the .txt extension

Returns 0 (false)

277

grep manju /etc/passwd

Search /etc/passwd for user "manju"

groupmod -n group mygroup

Change the group "mygroup" to "group"

head myfiles.txt

Display the first 10 lines of "myfiles.txt"

head -15 myfiles.txt

Display the first 15 lines of "myfiles.txt"

head myfiles.txt myfiles0.txt

Display the first 10 lines of both myfiles.txt and myfiles0.txt − with a header before each that indicates the file name

head -n 5K myfiles.txt

Display the first 5,000 lines of "myfiles.txt"

head -n 4 *.txt

Display the first 4 lines of every file in the working directory whose file name ends with the .txt extension

iostat

Display operating system storage input and output statistics

last reboot | less

Display listing of last logged in users and system last reboot time and date

278

 last -x | less

Display last shutdown date and time

last shutdown

Display last shutdown date and time

ldd /bin/bash

Display the shared library dependencies of the program /bin/bash

less -N myfiles.txt

View the file myfiles.txt − displaying a line number at the beginning of each line

ls *.{html,php,txt}

List all files with .html, .php and .txt file extension

ls /

List the contents of root directory

ls [aeiou]*

List only files that begin with a vowel (a, e, i, o and u)

lsof -i -U

List all open Internet, x.25 (HP-UX) and UNIX domain files

lsof -i 4 -a -p 555

List all open IPv4 network files in use by the process whose Process ID is 555

lsof -i 6

List only open IPv6

network files

279

xz myfiles.txt

Compress the file "myfiles.txt" into "myfiles.txt.xz"

xz -dk myfiles.txt.xz

Decompress "myfiles.txt.xz" into "myfiles.txt"

mkdir -m a=rwx dir

Create the directory "dir" and set its file mode so that all users may read, write and execute it

modinfo snd

Display all available information about the "snd" Linux kernel module

more +3 myfiles.txt

Display the contents of file "myfiles.txt" beginning at line 3

more +/"Hello" myfiles.txt

Display the contents of file "myfiles.txt" beginning at the first line containing the string "Hello"

netstat -g

Display multicast group membership information for both IPv4 and IPv6

netstat -c

Print netstat information every few second

netstat -natp

Display statistics about active Internet connections

280

 netstat -rn

 # Display the routing table for all IP addresses bound to the server

netstat -an

Display information about all active connections to the server

od -b myfiles.txt

Display the contents of "myfiles.txt" in octal format

od -Ax -c myfiles.txt

Display the contents of "myfiles.txt" in ASCII character format − with byte offsets displayed as hexadecimal

trap -l

Display a list of signal names and their corresponding numbers

trap

Display a list of the currently-set signal traps

yum list openssh

Search for a package with a name "OpenSSH"

yum grouplist

List all available Group Packages

yum repolist

List all enabled Yum repositories

281

yum repolist all

List all Enabled and Disabled Yum Repositories

paste 1.txt 2.txt

Display the contents of 1.txt and 2.txt side-by-side

ls -a | pr -n -h "Files in $(pwd)" > dc.txt

cat dc.txt

2022-04-02 01:10 Files in /home/manju Page 1

 1 .

 2 ..

 3 1.txt

 4 2.txt

 5 .bash_history

 6 .bash_logout

 7 .bash_profile

 8 .bashrc

 9 bio.txt

 10 .cache

 11 .config

 12 Data.txt

 13 Desktop

 14 dir

 15 Documents

282

 printf "Hi, I'm %s.\n" $LOGNAME

 → Hi, I'm manju.

printf "%.*s" 6 "abcdefg"

→ abcdef

ps -eLf

Get information about threads

ps axms

Get information about threads

 ps -eo euser,ruser,suser,fuser,f,comm,label

 ps axZ

 ps -eM

Get security information

Command:

pstree -h

Description:

Display all processes as a tree, with the current process and its ancestors highlighted

rm -- 1.txt

Delete "1.txt" file in the current directory

rm /home/manju/2.txt

Delete "2.txt" file in the directory "/home/manju"

rm ./1.txt

283

ip route list

List current routing table

route -n

Display routing table for all IPs bound to the server

script -c 'echo "Hello, World!"' hello.txt

 cat hello.txt

 sfdisk -s

 # List the sizes of all disks

 ls -d ~/.ssh

 # Check if the .ssh directory exists or not

 sha224sum myfiles.txt

 # Display the SHA224 checksum of the "myfiles.txt" file in the current directory

Script started, file is hello.txt

Hello, World!

Script done, file is hello.txt

Script started on Sat 02 Apr 2022 03:24:52 AM PDT

Hello, World!

Script done on Sat 02 Apr 2022 03:24:52 AM PDT

284

 sha256sum myfiles.txt

 # Display the SHA256 checksum of the "myfiles.txt" file in the current directory

 sha384sum myfiles.txt

 # Display the SHA384 checksum of the "myfiles.txt" file in the current directory

 sha512sum myfiles.txt

 # Display the SHA512 checksum of the "myfiles.txt" file in the current directory

 shutdown 8:00

 # Schedule the system to shut down at 8 A.M

 shutdown 20:00

 # Schedule the system to shut down at 8 P.M

 shutdown +15 "The system will be shutdown in 15 minutes."

 # Schedule the system to shut down in 15 minutes with the normal message alerting users that the system is shutting down

 shutdown -P now

 # Power off the system immediately

 sleep 10

 # Delay for 10 seconds

 startx -- -depth 16

 # Start an X session at 16 bits color depth

285

time cal

Reports how long it took for the "cal" command to complete

tr "[:lower:]" "[:upper:]" < myfiles.txt

Translate the contents of "myfiles.txt" to uppercase

tr -cd "[:print:]" < myfiles.txt

Remove all non-printable characters from "myfiles.txt"

cat myfiles.txt

tr -cs "[:alpha:]" "\n" < myfiles.txt

 uncompress myfiles.txt.xz

 # Uncompress the file "myfiles.txt.xz"

 w manju

 # Display information for the user named "manju"

 write albert

 # Write a message to the user "albert"

Hello World

Hello

World

xlsfonts

Lists all fonts available to the default X server and display

xset q

Display the values of all current X Window

System preferences

yes | rm -i *.txt

Remove all files with the extension .txt

from the current directory

286

What is Linux and why is it so popular?

Whether you know it or not you are already using Linux (the best-known and most-used open

source operating system) every day. From supercomputers to smartphones, the Linux operating

system is everywhere. As an operating system, Linux is a family of open source Unix-like

software based on the Linux kernel - that sits underneath all of the other software on a computer,

receiving requests from those programs and relaying these requests to the computer's hardware.

With regard to careers, it is becoming increasingly valuable to have Linux skills rather than just

knowing how to use Windows. In general, Linux is harder to manage than Windows, but offers

more flexibility and configuration options.

Every desktop computer uses an operating system. The most popular operating systems in use

today are: Windows, Mac OS, and LINUX. Linux is the best-known notoriously reliable and

highly secure open source portable operating system -- very much like UNIX -- that has become

very popular over the last several years -- created as a task done for pleasure by Linus Torvalds -

- computer science student at the University of Helsinki in Finland -- in the early 1990s and later

developed by more than a thousand people around the world.

Linux is fast, free and easy to use, that sits underneath all the other software on a computer −

runs your computer -- handling all interactions between you and the hardware i.e., whether

you're typing a letter, calculating a money budget, or managing your food recipes on your

computer, the Linux operating system (similar to other Operating Systems, such as Windows XP,

Windows 7, Windows 8, and Mac OS X) provides the essential air that your computer breathes.

Linux is the most important technology advancement of the twenty-first century and Licensed

under the General Public License (GPL) that Linux uses ensures that the software will always be

open to anyone and whose source code is open and available for any user to check, which makes

it easier to find and repair vulnerabilities and it power the laptops, development machines and

287

servers at Google, Facebook, Twitter, NASA, and New York Stock Exchange, just to name a

few. Linux has many more features to amaze its users such as: Live CD/USB, Graphical user

interface (X Window System) etc.

Why LINUX?

Although Microsoft Windows (which is the most likely the victim of viruses and malware) has

made great improvements in reliability in recent years, it considered less reliable than Linux.

Linux is notoriously reliable and secure and it is free from constant battling viruses and malware

(which may affect your desktops, laptops, and servers by corrupting files, causing slow downs,

crashes, costly repairs and taking over basic functions of your operating system) – and it keep

yourself free from licensing fees i.e., zero cost of entry ... as in free. You can install Linux on as

many reliable computer ecosystems on the planet as you like without paying a cent for software

or server licensing. While Microsoft Windows usually costs between $99.00 and $199.00 USD

for each licensed copy and fear of losing data.

Below are some examples of where Linux is being used today:

 Android phones and tablets

 Servers

 TV, Cameras, DVD players, etc.

 Amazon

 Google

 U.S. Postal service

 New York Stock Exchange

Linux Operating System has primarily three components:

288

 Kernel

Kernel is the core part of Linux Operating System and interacts directly with hardware. It is

responsible for all major activities of the Linux operating system.

 System Library

System libraries are special programs using which application programs accesses Kernel's

features.

 System Utility

System Utility programs are responsible to do specialized tasks.

Important features of Linux Operating System:

 Portable

 Open Source

 Multi-User

 Multiprogramming

 Hierarchical File System

 Security

Now Linux (successfully being used by several millions of users worldwide) has grown passed

the stage where it was almost exclusively an academic system, useful only to a handful of people

with a technical background. It provides more than the operating system: there is an entire

infrastructure supporting the chain of effort of creating an operating system, of making and

testing programs for it, of bringing everything to the users, of supplying maintenance, updates

and support and customizations, runs on different platforms including the Intel and Alpha

platform. Today, Linux is ready to accept the challenge of a fast-changing world to do various

289

types of operations, call application programs etc. Since the hiring focus is shifting more

and more toward DevOps type skills, a Linux skill set will be the types of things that will

make you very deployable.

[manju@localhost ~]$ echo al{an,bert,exander}

alan albert alexander

[manju@localhost ~]$ mkdir {txt,doc,pdf}files

[manju@localhost ~]$ ls

txtfiles docfiles pdffiles

[manju@localhost ~]$ x=Albert; y="$x won \$100.00"; echo $y

Albert won $100.00

[manju@localhost ~]$ x=5; test $x -eq 10; echo $?

1

[manju@localhost ~]$ x=5; test $x -eq 5; echo $?

0

exit status of the test command is 1

exit status of the test command is 0

cat /etc/profile

Display System login initialization file

cat /etc/bashrc

Display System BASH shell configuration file

cat .bash_profile

Display Login initialization file

290

[manju@localhost ~]$ date

Wed Sep 28 08:14:17 PDT 2022

[manju@localhost ~]$ alias x=date

[manju@localhost ~]$ x

Wed Sep 28 08:14:27 PDT 2022

[manju@localhost ~]$ echo $BASH_VERSION

4.2.46(1)-release

[manju@localhost ~]$ echo $HISTCMD

290

[manju@localhost ~]$ echo $HOSTTYPE

x86_64

[manju@localhost ~]$ echo $OSTYPE

linux-gnu

[manju@localhost ~]$ echo $PPID

3563

[manju@localhost ~]$ echo $SHLVL

2

[manju@localhost ~]$ echo $TERM

xterm-256color

[manju@localhost ~]$ echo $EUID

1000

Display the current BASH version number

Display the number of the current command in the history list

Display the type of machine the host runs on

Display the operating system in use

Display the process ID for shell's parent shell

Display the current shell level

Display the terminal type

Display the Effective user ID

291

PS1="\w" Display the full pathname of the current working directory

PS1="\W" Display the name of the current working directory

[manju@localhost ~]$ PS1="\d"

Sun Oct 02 # Display the Current date

[manju@localhost ~]$ PS1="\h"

localhost # Display the Hostname

[manju@localhost ~]$ PS1="\s"

bash # Display the Shell type currently active

[manju@localhost ~]$ PS1="\t"

18:42:10 # Display the Time of day in hours, minutes, and seconds

[manju@localhost ~]$ PS1="\u"

manju # Display the Username

[manju@localhost ~]$ PS1="\v"

4.2 # Display the Shell version

[manju@localhost ~]$ PS1="Hello\n World"

Hello

 World

[manju@localhost ~]$ PS1="Hello \\ World"

Hello \ World

292

Directory Function

/ The top-level directory of a Linux system that holds all files, device

information, and system information organized into directories

/home Holds users ' home directories

/bin Contains every essential command and utility program

/usr Contains the commands and files that the system uses

/usr/bin Include utility programs and user-friendly commands

/usr/sbin Holds commands for system administration

/usr/lib Contains programming language libraries

/usr/share/doc Contains documentation for Linux

/usr/share/man Contains the online "man" files

/var/spool Contains spooled files, such as those produced for network transfers and

printing operations

/sbin Contains commands for system administration used to boot the system

/var Holds a variety of files, including mailbox files

/dev Holds file interfaces for devices like printers and terminals

/etc Holds all system files, including configuration files

find myfiles -name '*.c' -ls

Using the -ls command, all files in the "myfiles" directory

with the .c extension are searched and displayed

293

find / -user manju -print

Finds every file in a user's home directory and every

file that user owns in other user directories

ls /usr/share/X11

List the system X11 configuration and support files

ls /etc/X11

List the configuration files

ls /etc/gdm

Display the contents of GDM configuration directory

ls /usr/share/gdm

Display the contents of GDM configuration directory for default settings and themes

 ls /etc/gconf

List the GConf configuration files

ls /usr/share/gnome

List the Files used by GNOME applications

ls /usr/share/doc/gnome*

Display the contents of Documentation for various GNOME packages, including libraries

294

ls /usr/share/icons

List the Icons used in KDE desktop and applications

rpm -qa | more

Displays a list of all installed packages

ls /etc/cron.d

List the directory with numerous crontab files that is only accessible to the root user

ls /etc/cron.hourly

List the directory for tasks performed hourly

ls /etc/cron.daily

List the directory for tasks performed daily

ls /etc/cron.weekly

List the directory for tasks performed weekly

ls /etc/cron.monthly

List the directory for tasks performed monthly

ls /etc/mtab

List the currently mounted file systems

ls /etc/services

List the services run on the system and the ports they use

 295

ls /etc/cups

List the CUPS printer configuration files

ls /proc/net

List the Directory for network devices

free -s 3

Display the current usage status of Memory continuously after regular interval

ls -lhR /var | grep \- | grep [1-9]*M

List "/var" files larger than 1 MB but less than 1 GB

whereis -b ls

Search only the binary file related to a command "ls"

whereis -m ls

Searches only for man pages related to a command "ls"

whereis -s ls

Searches only for source files related to a command "ls"

[manju@localhost ~]$ echo "Alan" "Mathison" "Turing"

Alan Mathison Turing

296

watch -t -n 1 date

Display the date

[manju@localhost ~]$ echo "Albert" > 1.txt && cat 1.txt

Albert

du -sh * --time

Check each file's size and the date and time it was last edited

dmidecode -s system-serial-number

Display the serial number of Linux server

ls -aril

Display all the files with sequence number

yum search mod_

Display all the modules

du -sch *

Display the sum of size of all files and folders in present directory

dmidecode | grep -A3 '^System Information'

Display the server hardware name and model

dmesg | grep -i firmware

Display all firmware error

297

cat /proc/cpuinfo | grep processor | wc -l

Display the number of cores

netstat -ap | grep 80

Display the process id which is using port number 80

dmidecode --type memory

Display the physical memory attached to the Server

dirs

Display the list of currently remembered directories

blkid -i /dev/sda

Display information about available block devices

crontab -e

This command runs crontab

[manju@localhost ~]$ df -h /home

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 18G 5.2G 13G 29% /

Look for free disk space using the df command within

the /home directory

298

[manju@localhost ~]$ hostname -I

192.168.6.131 192.168.122.1

badblocks -s /dev/sda

Check for unreadable blocks on disk sda

tail -10 /var/log/messages

Display the last 10 syslog messages

lsof -u manju

List files opened by the user "manju"

sudo shutdown -r 2

Shuts down and reboots the machine in 2 minutes

[manju@localhost ~]$ cat 1.txt

albert

[manju@localhost ~]$ cat 1.txt | tr a-z A-Z > 2.txt

[manju@localhost ~]$ cat 2.txt

ALBERT

cat /etc/passwd | column -t -s :

Display the contents of "/etc/passwd" in column

Display all local IP addresses of the host

299

nmcli d

Display the status of all network interfaces

grep "^[[:alnum:]]" myfiles.txt

Search for a line which will start with alphanumeric characters in "myfiles.txt"

grep "^[[:alpha:]]" myfiles.txt

Search for a line which will start with alpha characters in "myfiles.txt"

grep "^[[:blank:]]" myfiles.txt

Search for a line which will start with blank characters in "myfiles.txt"

grep "^[[:digit:]]" myfiles.txt

Search for a line which will start with digit characters in "myfiles.txt"

grep "^[[:lower:]]" myfiles.txt

Search for a line which will start with lowercase letters in "myfiles.txt"

grep "^[[:punct:]]" myfiles.txt

Search for a line which will start with punctuation characters in "myfiles.txt"

grep "^[[:graph:]]" myfiles.txt

Search for a line which will start with graphical characters in "myfiles.txt"

grep "^[[:print:]]" myfiles.txt

Search for a line which will start with printable characters in "myfiles.txt"

300

grep "^[[:space:]]" myfiles.txt

Search for a line which will start with space characters in "myfiles.txt"

grep "^[[:upper:]]" myfiles.txt

Search for a line which will start with uppercase letters in "myfiles.txt"

grep "^[[:xdigit:]]" myfiles.txt

Search for a line which will start with hexadecimal digits in "myfiles.txt"

vmstat -a

Display active and inactive system memory

vmstat -s

Display memory and scheduling statistics

vmstat -f

Display number of forks created since system boot

vmstat -D

Display a quick summary statistic of all disk activity

vmstat -d

Display a detailed statistic on each disk usage

vmstat 5 -S M

This command is used to update the statistics every five

seconds and change the display units to megabytes

301

[manju@localhost ~]$ free -h --total

 total used free shared buff/cache available

Mem: 976M 566M 75M 8.7M 334M 209M

Swap: 2.0G 84K 2.0G

Total: 3.0G 566M 2.1G

 hostname -s

 hostname --short
Display the short version of the hostname

hostname --all-ip-addresses

Display All Network Addresses

date -r /etc/hosts

Display Last Modified Timestamp of a Date File

 [manju@localhost ~]$ cat 1.txt

Albert Einstein

[manju@localhost ~]$ cat 2.txt

Elsa Einstein

[manju@localhost ~]$ cat 1.txt > 2.txt

[manju@localhost ~]$ cat 2.txt

Albert Einstein

302

[manju@localhost ~]$ cat 12.txt

Albert Einstein

Elsa Einstein

[manju@localhost ~]$ cat -n 12.txt

1 Albert Einstein

2 Elsa Einstein

[manju@localhost ~]$ cat 1.txt

Albert Einstein

[manju@localhost ~]$ cat -e 1.txt

Albert Einstein$

sudo shutdown 08:00

Shutdown the system at 8 AM in the morning

grep 'but\|is' phy.txt

Search for the words "but" and "is" in the phy.txt file

grep 'is\|but\|of' phy.txt

Search for the words "but", "is" and "of" in the phy.txt file

grep -e but -e is -e of phy.txt

303

echo "The system will be shutdown in 10 minutes." | wall

The message (The system will be shutdown in 10 minutes.) will

be broadcasted to all users that are currently logged in

[manju@localhost ~]$ echo -e 'Albert Einstein'

Albert Einstein

[manju@localhost ~]$ echo -e 'Albert \c Einstein'

Albert [manju@localhost ~]$

ss --all

List all listening and non-listening connections

ss --listen

List only listening sockets

ss -t state listening

Find all listening TCP connections

[manju@localhost ~]$ hostname -I | awk '{print $1}'

192.168.6.131

System's IP address

304

yum erase httpd

Uninstall apache

chmod 644 1.txt

 User: 6 = 4 + 2 (read and write)

 Group: 4 = 4 + 0 + 0 (read)

 Others: 4 = 4 + 0 + 0 (read)

 read has the value of 4

 write has the value of 2

 execute has the value of 1

 no permission has the value of 0

 7 = 4 + 2 + 1 (read, write and execute)

rpm -qi httpd

Display information about a particular package (apache)

sudo rpm -qa | wc -l

Display the total number of packages installed

sudo repoquery -a --installed

List all installed packages with the repoquery command

6 = 4 + 2 + 0 (read and write)

5 = 4 + 0 + 1 (read and execute)

4 = 4 + 0 + 0 (read)

305

cat /var/log/boot.log

Display all information related to booting operations

cat /var/log/maillog

Display all information related to mail servers and archiving emails

cat /var/log/yum.log

Display Yum command logs

mkdir -m777 myfiles

Create a directory "myfiles" with read, write and execute permissions

rpm -qa centos-release

Display CentOS version

ps -AlFH

Get information about threads (LWP and NLWP)

 ps -eM

 ps axZ

ps -auxf | sort -nr -k 4 | head -10

Display the top 10 memory consuming process

Get Security Information of Linux Process

306

ps -auxf | sort -nr -k 3 | head -10

Display the top 10 CPU consuming process

sar -n DEV | more

Monitor, collect and report Linux system activity

create or overwrite "1.txt" file

echo "Albert Einstein" > 1.txt

create or append to "1.txt" file

echo "Albert Einstein" >> 1.txt

grep -i "is" phy.txt

Search for a given string in a file "phy.txt"

grep -A 3 -i "is" phy.txt

Print the matched line and the following three lines

grep -r "is" *

Recursively look for a given string in all files

export | grep ORACLE

Display oracle related environment variables

307

chkconfig --list | grep network

View the startup configuration of Linux network service

shutdown -r 18:30

Shutdown the system immediately and reboot at 18:30

find /home -size +1024 -print

Find files above 1MB in home directory

find /home -size +1024 -size -4096 -print

Find files above 1Mb and below 4MB in home directory

 netstat -ain

Display the Kernel Interface table

sar -n SOCK | more

Display networking Statistics

find /home -size +10000k

Find files greater than 10000k in the home directory

ls -ld /home

List information about the home directory instead of its contents

308

chmod go=+r 1.txt

Add read permission for the owner and the group

chown manju 1.txt

Change ownership of a file "1.txt" to user "manju"

du -sh *

Display the disk usages of the files in the current directory

du -sh .[!.]* *

Display the disk usages of the files (including hidden files) in the current directory

 du -sch .[!.]* *

Display the total disk usage of the files

(including hidden files) in the current directory

du --threshold=1G -sh .[!.]* *

Display only files with more than 1GB in size which

located under current directory

309

iostat -kx

Display general information about the disk operations in real time

netstat -ntlp

Display open TCP sockets

netstat -nulp

Display open UDP sockets

netstat -nxlp

Display open Unix sockets

 dmidecode -q | less

Display BIOS information

systemctl --failed

List failed services

losetup

Display information about all loop devices

sudo yum install parted

Install parted

parted -v

Check Parted version

parted -l

Lists partition layout on all block devices

parted -m

Displays machine parseable output

Parted is a well-known command line

tool that allows us to easily manage

hard disk partitions

quit

Exit the parted shell

310

 getfacl --access 1.txt

 getfacl -a 1.txt

 getfacl -n 1.txt

 getfacl --numeric 1.txt

Display the file access

control list of a file "1.txt"

List the numeric user and

group IDs w.r.t file "1.txt"

sudo tcpdump -D

List of all available network interfaces in the system

[manju@localhost ~]$ xz myfiles.txt

[manju@localhost ~]$ ls | grep myfiles

myfiles

myfiles.txt.xz

Compress a file "myfiles.txt"

using xz command

[manju@localhost ~]$ free -t | awk 'NR == 2 {print $3/$2*100}'

61.852

[manju@localhost ~]$ free -t | awk 'FNR == 2 {print $3/$2*100}'

61.852

Display Memory Utilization

311

[manju@localhost ~]$ free -t | awk 'NR == 3 {print $3/$2*100}'

2.54155

[manju@localhost ~]$ free -t | awk 'FNR == 3 {print $3/$2*100}'

2.54155
Display Swap Utilization

[manju@localhost ~]$ free -t | awk 'FNR == 2 {printf("%.2f% \n"), $3/$2*100}'

61.86%

[manju@localhost ~]$ free -t | awk 'NR == 2 {printf("%.2f% \n"), $3/$2*100}'

61.86%

Display Memory Utilization with Percent Symbol and two decimal places

[manju@localhost ~]$ free -t | awk 'FNR == 3 {printf("%.2f% \n"), $3/$2*100}'

2.65%

[manju@localhost ~]$ free -t | awk 'NR == 3 {printf("%.2f% \n"), $3/$2*100}'

2.65%

Display Swap Utilization with Percent Symbol and two decimal places

312

[manju@localhost ~]$ top -b -n1 | grep ^%Cpu | awk '{cpu+=$9}END{print 100-cpu/NR}'

100

Display CPU Utilization

[manju@localhost ~]$ top -b -n1 | grep ^%Cpu | awk '{cpu+=$9}END{printf("%.2f% \n"), 100-cpu/NR}'

100.00%

Display CPU Utilization with Percent Symbol and two decimal places

swapon -s

Print swap usage summaries

swapon -a

Activate all of swap space

swapoff -a

Deactivate all of swap space

[manju@localhost ~]$ cat /etc/system-release

CentOS Linux release 7.3.1611 (Core)

Display the version of CentOS

alias -p

List all Aliases

lsof -i :8080

Check which process is running on port 8080

313

sudo netstat -anp | grep tcp | grep LISTEN

Display the various in-use ports and the process using it

sudo netstat -anp | grep 8080

Display the process listening on port 8080

printf "%s\n" *

Prints the files and directories that are in the current directory

printf "%s\n" */

Prints only the directories in the current directory

printf "%s\n" *.{gif,jpg,png}

Lists only some image files

[manju@localhost ~]$ alias x='date'

[manju@localhost ~]$ x

Fri Oct 7 03:51:39 PDT 2022

[manju@localhost ~]$ unalias x

[manju@localhost ~]$ x

bash: x: command not found...

create an alias

preview the alias

remove the alias

314

[manju@localhost ~]$ x="alan"; printf '%s\n' "${x^}"

Alan

[manju@localhost ~]$ x="alan"; printf '%s\n' "${x^^}"

ALAN

[manju@localhost ~]$ x="alan"; declare -u name="$x"; echo "$name"

ALAN

 find . -name "xyz[a-z][0-9]"

find . -mmin -120

Search for files changed during the previous two hours

find . -mmin +120

Search for files that haven't been updated in the past two hours

Find directories and files with names starting with "xyz" and

ending with an alpha character after a one-digit

find . -mtime -3

Find files that have been modified within the last 3 days

find . -mtime +3

Find files that have not been modified within the last 3 days

315

[manju@localhost ~]$ names="Albert Alan John Mary"; x=(${names// / }); echo ${x[0]}

Albert

[manju@localhost ~]$ names="Albert Alan John Mary"; x=(${names// / }); echo ${x[3]}

Mary

names="Albert+Alan+John+Mary";

x=(${names//+/ });

echo ${x[0]}

Output: Albert

names="Albert+Alan+John+Mary";

x=(${names//+/ });

echo ${x[3]}

Output: Mary

[manju@localhost ~]$ awk '{print $2}' <<< "Alan Mathison Turing"

Mathison

[manju@localhost ~]$ awk '{print $1}' <<< "Alan Mathison Turing"

Alan

x='4 * 2'; echo "$x"

prints 4 * 2

x='4 * 2'; echo $x

prints 4, the list of files in the current directory, and 2

x=(hello world); echo "${x[@]/#/A}"

Output: Ahello Aworld

316

x='4 * 2'; echo "$(($x))"

prints 8

[manju@localhost ~]$ x="ALAN"; printf '%s\n' "${x,}"

aLAN

[manju@localhost ~]$ x="ALAN"; printf '%s\n' "${x,,}"

alan

[manju@localhost ~]$ x="Alan"; echo "${x~~}"

aLAN

[manju@localhost ~]$ x="Alan"; echo "${x~}"

alan

[manju@localhost ~]$ x='You are a genius'; echo "${x/a/A}"

You Are a genius

[manju@localhost ~]$ x='You are a genius'; echo "${x//a/A}"

You Are A genius

[manju@localhost ~]$ x='You are a genius'; echo "${x/%s/N}"

You are a geniuN

[manju@localhost ~]$ x='You are a genius'; echo "${x/s/}"

You are a geniu

317

[manju@localhost ~]$ x='You are a genius'; echo "${x#*a}"

re a genius

[manju@localhost ~]$ x='You are a genius'; echo "${x#*g}"

enius

[manju@localhost ~]$ foo=25; i=foo; echo ${i}

foo

[manju@localhost ~]$ foo=25; i=foo; echo ${!i}

25

[manju@localhost ~]$ x='You are a genius'; echo "${x%a*}"

You are

[manju@localhost ~]$ x='You are a genius'; echo "${x%%a*}"

You

[manju@localhost ~]$ x=Bob-Dev-Fox; echo ${x%%-*}

Bob

[manju@localhost ~]$ x=Bob-Dev-Fox; echo ${x%-*}

Bob-Dev

[manju@localhost ~]$ x=Bob-Dev-Fox; echo ${x##*-}

Fox

[manju@localhost ~]$ x=Bob-Dev-Fox; echo ${x#*-}

Dev-Fox

318

find . -type f -path '*/Documents/*'

Find only files within a folder called Documents

find . -type f -path '*/Documents/*' -o -path '*/ Downloads/*'

Find only files within a folder called Documents or Downloads

find . -type f -not -path '*/Documents/*'

Find all files except the ones contained in a folder called Documents

find . -type f -not -path '*log' -not -path '*/Documents/*'

Find all files except the ones contained in a folder called Documents or log files

[manju@localhost ~]$ find /dev -type b

/dev/sr0

/dev/sda3

/dev/sda2

/dev/sda1

/dev/sda

find . -maxdepth 1 -type f -name "*.txt"

Find every.txt file from the current directory alone

[manju@localhost ~]$ echo "$(printf "%04d" "${x}")"

0000

Block devices

[manju@localhost ~]$ echo '16 / 5' | bc

3

[manju@localhost ~]$ echo '16 / 5' | bc -l

3.20000000000000000000

319

[manju@localhost ~]$ echo "$(printf "%05d" "${x}")"

00000

[manju@localhost ~]$ echo "\"'\""

"'"

[manju@localhost ~]$ echo '3 5 + p' | dc

8

[manju@localhost ~]$ dc <<< '3 5 + p'

8

[manju@localhost ~]$ echo '3 5 * p' | dc

15

[manju@localhost ~]$ dc <<< '3 5 * p'

15

[manju@localhost ~]$ expr 'Alan Turing' : 'Ala\(.*\)ring'

n Tu

[manju@localhost ~]$ echo '12 == 12 && 18 > 12' | bc

1 (True)

[manju@localhost ~]$ echo '12 == 13 && 18 > 12' | bc

0 (False)

320

[manju@localhost ~]$ expr PQRSTUVWXYZ : PQRS

4

ls -ral

Listing of all files in reverse alphabetical order

Display the number of matching characters

 ls -tl

 ls -trl

List the files such that the one that was most recently edited is at the top of the list

find . -regex ".*\(\.sh\|\.txt\)$"

Find .sh or .txt files

[manju@localhost ~]$ find . -iregex ".*\(\.sh\|\.pdf\)$"

./bc.pdf

./1.PDF

./data.sh

./1.sh

./2.SH

./1.pdf

./2.sh

find . -type f -print

List only regular files

[manju@localhost ~]$ echo "alan+alan+alan+alan" | xargs -d +

alan alan alan alan

[manju@localhost ~]$ echo "alan+alan+alan+alan" | xargs -d + -n 2

alan alan

alan alan

321

[manju@localhost ~]$ echo -e "2\nalbert\n" > 1.txt

[manju@localhost ~]$ cat 1.txt

2

albert

 ps -eLf --sort -nlwp | head

 ps -eLf

Display information about process threads

systemctl -l -t service | less

List all Systemd services

[manju@localhost ~]$ echo -e "Albert\nTesla\nJohn"

Albert

Tesla

John

[manju@localhost ~]$ echo -e "Albert\nTesla\nJohn" | nl

 1 Albert

 2 Tesla

 3 John

322

[manju@localhost ~]$ echo -e "Albert\nTesla\nJohn" | nl -s ": " -w 1

1: Albert

2: Tesla

3: John

whiptail --yesno "Do you wish to proceed?" 10 40

Display a simple yes or no input box on the command-line with whiptail

du -h -d1

Check only the current directory's file space usage.

sudo nmcli networking off

sudo nmcli networking on

Restart network service

using nmcli tools

find / - manju

Find files and directories owned by user "manju"

locate "*.png"

Find all files containing '.png' in the name

find . -name '*.txt' -type f -delete

Find all files with '.txt' extension in the current

directory, including subdirectories and delete them

323

 find . -type f -printf "\"%p\" " | xargs chmod 664

Find all files in the current directory, including subfolders and assign rights 664

find . -type d -printf "\"%p\" " | xargs chmod 775

Find all files in the current directory, including subfolders and assign rights 775

ll

List the files in current directory

ls -l

sudo netstat -nltp

Display all open ports by process

date +%j

Convert current date into Julian format

date -d "2022/03/13" +%j

Convert a specific date into Julian format

date +%Y%m%d

Display current date in YYYYMMDD format

date +%d\/%m\/%Y

Display current date in DD/MM/YYYY format

324

C Exercises

Dennis Ritchie, known as the "Father of C Low-Level Programming Language," created the

general-purpose, procedural, imperative computer programming language "C" in 1972 at the

Bell Telephone Laboratories to be used with the UNIX operating system. It now ranks among the

most popular programming languages after spreading to numerous different operating systems.

Many other well-known languages, including C++, which was initially created as an

improvement to C, have also been strongly inspired by C. Though it is also widely used for

creating applications, it is the most frequently used programming language for creating system

software. It is one of the programming languages that is most frequently used today. Since 1989,

C has been standardized by both the International Organization for Standardization and the

American National Standards Institute. Don't worry if you are a beginner; we have exercises for

you. We'll concentrate on beginner-level programming problems in this chapter to help you learn

C and develop your programming abilities.

325

Question 1

Question:

Solution:

#include<stdio.h>

int main() {

return 0;

}

Question 2

Question:

Write a program to compute the perimeter and area of a rectangle.

Solution:

#include<stdio.h>

int main() {

int height = 8;

int width = 5;

#include<stdio.h>

int main() {

int a = 6;

{

int a = 2;

printf("%d\n", a);

}

printf("%d\n", a);

}

Output:

2

6

326

printf("Hello, World!");

Write a program to print Hello, World!.

int perimeter = 2*(height + width);

printf("Perimeter of the rectangle is: %d cm\n", perimeter);

int area = height * width;

printf("Area of the rectangle is: %d square cm\n", area);

return 0;

}

Question 3

Question:

Write a program to compute the perimeter and area of a circle.

Solution:

#include<stdio.h>

int main() {

int radius = 4;

float perimeter = 2*3.14*radius;

printf("Perimeter of the circle is: %f cm\n", perimeter);

float area = 3.14*radius*radius;

printf("Area of the circle is: %f square cm\n", area);

return 0;

}

Numerous additional programming languages,

including C++, Java, JavaScript, Go, C#, PHP, Python,

Perl, C-shell, and many others, are based on C.

327

Question 4

Question:

Write a program that accepts two numbers from the user and calculate the sum of the two

numbers.

Solution:

#include<stdio.h>

int main() {

int a, b, sum;

printf("\nEnter the first number: ");

scanf("%d", &a);

printf("\nEnter the second number: ");

scanf("%d", &b);

sum = a + b;

printf("\nSum of the above two numbers is: %d", sum);

return 0;

}

Question 5

Question:

Write a program that accepts two numbers from the user and calculate the product of the

two numbers.

#include<stdio.h>

int main() {

int a;

printf("%d", a);

return 0;

}

In C Language: if

the variable is not

assigned a value, it

takes a garbage

value.

328

Solution:

#include<stdio.h>

int main() {

int a, b, mult;

printf("\nEnter the first number: ");

scanf("%d", &a);

printf("\nEnter the second number: ");

scanf("%d", &b);

mult = a * b;

printf("\nProduct of the above two numbers is: %d", mult);

return 0;

}

Question 6

Question:

Write a program that accepts three numbers and find the largest of three.

Solution:

#include<stdio.h>

int main() {

int x, y, z;

printf("\nEnter the first number: ");

scanf("%d", &x);

#include<stdio.h>

int Message() {

printf("Hello, World!");

return 0;

}

int main() {

Message();

}

Output:

Hello, World!

329

printf("\nEnter the second number: ");

scanf("%d", &y);

printf("\nEnter the third number: ");

scanf("%d", &z);

// if x is greater than both y and z, x is the largest

if (x >= y && x >= z)

printf("\n%d is the largest number.", x);

// if y is greater than both x and z, y is the largest

if (y >= x && y >= z)

printf("\n%d is the largest number.", y);

// if z is greater than both x and y, z is the largest

if (z >= x && z >= y)

printf("\n%d is the largest number.", z);

return 0;

}

Question 7

Question:

Write a program that reads three floating values and check if it is possible to make a

triangle with them. Also calculate the perimeter of the triangle if the entered values are

valid.

330

Solution:

#include<stdio.h>

int main() {

float x, y, z;

printf("\nEnter the first number: ");

scanf("%f", &x);

printf("\nEnter the second number: ");

scanf("%f", &y);

printf("\nEnter the third number: ");

scanf("%f", &z);

if(x < (y+z) && y < (x+z) && z < (y+x)) {

printf("\nPerimeter of the triangle is: %f\n", x+y+z);

}

else {

printf("\nIt is impossible to form a triangle.");

}

return 0;

}

Question 8

Question:

Write a program that reads an integer between 1 and 7 and print the day of the week in

English.

Solution:

/* Hello World /* Program in C*/ */

#include<stdio.h>

int main() {

printf("Hello World");

return 0;

}

Error

Comments cannot

be nested.

331

#include<stdio.h>

int main() {

int day;

printf("\nEnter a number between 1 to 7 to get the day name: ");

scanf("%d", &day);

switch(day) {

case 1 : printf("Monday\n"); break;

case 2 : printf("Tuesday\n"); break;

case 3 : printf("Wednesday\n"); break;

case 4 : printf("Thursday\n"); break;

case 5 : printf("Friday\n"); break;

case 6 : printf("Saturday\n"); break;

case 7 : printf("Sunday\n"); break;

default : printf("Enter a number between 1 to 7.");

}

return 0;

}

Question 9

Question:

Write a program to find the sum of two numbers.

Solution:

#include<stdio.h>

int main() {

int a, b, sum;

As it only supports scalar operations, C is now

often regarded as a low level language among

programmers, contrary to how it was once

thought to be a high level language.

332

a=1;

b=2;

sum = a + b;

printf("The sum of a and b = %d", sum);

return 0;

}

Question 10

Question:

Write a program to find the square of a number.

Solution:

#include<stdio.h>

#include<math.h>

int main() {

int a, b;

a=2;

b = pow((a), 2);

printf("The square of a = %d", b);

return 0;

}

#include<stdio.h>

extern int a;

int main()

{

printf("a = %d", a);

}

int a = 1;

Output:

a = 1

333

Question 11

Question:

Write a program to find the greatest of two numbers.

Solution:

#include<stdio.h>

int main() {

int a, b;

a = 2;

b = 3;

if(a>b) {

printf("a is greater than b");

}

else {

printf("b is greater than a");

}

return 0;

}

Question 12

Question:

Write a program to print the average of the elements in the array.

#include<stdio.h>

#define merge(a, b) a##b

int main()

{

 printf("%d ", merge(12, 09));

 return 0;

}

Output:

1209

334

Solution:

#include<stdio.h>

int main() {

int i, avg, sum = 0;

int num [5] = {16, 18, 20, 25, 36};

for(i=0; i<5; i++) {

sum = sum + num [i];

avg = sum/5;

}

printf("Sum of the Elements in the array is: %d\n", sum);

printf("Average of the elements in the array is: %d\n", avg);

return 0;

}

Question 13

Question:

Write a program that prints all even numbers between 1 and 25.

Solution:

335

#include<stdio.h>

int main() {

printf("Even numbers between 1 to 25:\n");

for(int i = 1; i <= 25; i++) {

if(i%2 == 0) {

printf("%d ", i);

Game theory is a mathematical framework used to study decision-
making in situations where the outcomes of one person's choices
depend on the choices made by others. It is the study of mathematical
representations of rational decision-makers interacting strategically.
The goal of game theory is to identify the optimal strategies that
players can use to achieve their objectives in situations where the
choices of one player affect the outcomes for all players involved.
Game theory is used in various fields such as economics, political
science, psychology, and biology.

}

}

return 0;

}

Question 14

Question:

Write a program that prints all odd numbers between 1 and 50.

Solution:

#include<stdio.h>

int main() {

printf("Odd numbers between 1 to 50:\n");

for(int i = 1; i <= 50; i++) {

if(i%2 != 0) {

printf("%d ", i);

}

}

return 0;

}

#include<stdio.h>

int main() {

char c = 'a';

putchar(c);

return 0;

}

Output:

a

The most widely used operating system,

Linux, has a C-based kernel.

336

Question 15

Question:

Write a program to print the first 10 numbers starting from one together with their

squares and cubes.

Solution:

#include<stdio.h>

int main() {

for(int i=1; i<=10; i++) {

printf("Number = %d its square = %d its cube = %d\n", i , i*i, i*i*i);

}

return 0;

}

Question 16

Question:

Write a program:

If you enter a character M

Output must be: ch = M.

Solution:

#include<stdio.h>

int main() {

int a, b;

for(a=1; a<=5; a++) {

for(b=1; b<=a; b++)

printf("%d", b);

printf("\n");

}

return 0;

}

Output:

1

12

123

1234

12345

337

#include<stdio.h>

int main() {

char M;

printf("Enter any character: ");

scanf("%c", &M);

printf("ch = %c", M);

return 0;

}

Question 17

Question:

Write a program to print the multiplication table of a number entered by the user.

Solution:

#include<stdio.h>

int main() {

int n, i;

printf("Enter any number: ");

scanf("%d", &n);

for(i=1; i<=5; i++) {

printf("%d * %d = %d\n", n, i, n*i);

}

return 0;

}

#include<stdio.h>

int main () {

float a;

a = (float) 51/4;

printf("%f", a);

return 0;

}

Output:

12.750000

#include<stdio.h>

int main() {

int x = 50, y, z;

if(x >= 50) {

y = 15;

z = 28;

printf("\n%d %d", y, z);

}

return 0;

}

Output:

15 28

338

Question 18

Question:

Write a program to print the product of the first 10 digits.

Solution:

#include<stdio.h>

int main() {

int i, product = 1;

for(i=1; i<=10; i++) {

product = product * i;

}

printf("The product of the first 10 digits is: %d", product);

return 0;

}

Question 19

Question:

Write a program to print whether the given number is positive or negative.

Solution:

#include<stdio.h>

The only ternary operator in

the C language is "?:"

339

int main() {

int a;

a = -35;

if(a>0) {

printf("Number is positive");

}

else {

printf("Number is negative");

}

return 0;

}

Question 20

Question:

Write a program to check the equivalence of two numbers entered by the user.

Solution:

#include<stdio.h>

int main() {

int x, y;

printf("\nEnter the first number: ");

scanf ("%d", &x);

printf("\nEnter the second number: ");

scanf ("%d", &y);

if(x-y==0) {

printf("\nThe two numbers are equivalent");

#include<stdio.h>

int main() {

char name[] = "Einstein";

printf("%c", name[0]);

return 0;

}

 Output:

E

340

}

else {

printf("\nThe two numbers are not equivalent");

}

return 0;

}

Question 21

Question:

Write a program to print the remainder of two numbers entered by the user.

Solution:

#include<stdio.h>

int main() {

int a, b, c;

printf("\nEnter the first number: ");

scanf ("%d", &a);

printf("\nEnter the second number: ");

scanf ("%d", &b);

c = a%b;

printf("\nThe remainder of %d and %d is: %d", a, b, c);

return 0;

}

"sizeof" is the only operator

which is also a keyword.

341

Question 22

Question:

Write a program to print the characters from A to Z.

Solution:

#include<stdio.h>

int main() {

char i;

for(i='A'; i<='Z'; i++) {

printf("%c\n", i);

}

return 0;

}

Question 23

Question:

Write a program to print the length of the entered string.

Solution:

#include<stdio.h>

#include<string.h>

#include<stdio.h>

int main() {

char name[] = "Einstein";

name[0] = 'H';

printf("%s", name);

return 0;

}

 Output:

Hinstein

342

int main() {

char str[1000];

printf("Enter a string to calculate its length: ");

scanf("%s", str);

printf("The length of the entered string is: %ld", strlen(str));

return 0;

}

Question 24

Question:

Write a program to check whether the given character is a lower case letter or not.

Solution:

#include<stdio.h>

#include <ctype.h>

int main() {

char ch = 'a';

if(islower(ch)) {

printf("The given character is a lower case letter");

}

else {

printf("The given character is a upper case letter");

}

return 0;

}

In printf() and scanf(), f stands for

formatted.

343

Question 25

Question:

Write a program to check whether the given character is a upper case letter or not.

Solution:

#include<stdio.h>

#include <ctype.h>

int main() {

char ch = 'A';

if(isupper(ch)) {

printf("The given character is a upper case letter");

}

else {

printf("The given character is a lower case letter");

}

return 0;

}

Question 26

Question:

Write a program to convert the lower case letter to upper case letter.

There must be a function named

main() in every C program.

344

Solution:

#include<stdio.h>

#include <ctype.h>

int main() {

char ch = 'a';

char b = toupper(ch);

printf("Lower case letter '%c' is converted to Upper case letter '%c'", ch,

b);

return 0;

}

Question 27

Question:

Write a program that takes a distance in centimeters and outputs the corresponding value

in inches.

Solution:

#include<stdio.h>

#define x 2.54

int main() {

double inch, cm;

printf("Enter the distance in cm: ");

scanf("%lf", &cm);

#include<stdio.h>

int main() {

int i = 6;

while(i == 3) {

i = i - 3;

printf ("%d\n", i);

--i;

}

return 0;

}

Output:

?

In a C program, any number of functions can be written.

In C, there are two different sorts of functions: user-

defined functions and library functions.

345

inch = cm / x;

printf("\nDistance of %0.2lf cms is equal to %0.2lf inches", cm, inch);

return 0;

}

Question 28

Question:

Write a program to print the output:

Einstein [0] = E

Einstein [1] = I

Einstein [2] = N

Einstein [3] = S

Einstein [4] = T

Einstein [5] = E

Einstein [6] = I

Einstein [7] = N

Solution:

#include<stdio.h>

int main() {

char name [8] = {'E' , 'I', 'N', 'S', 'T', 'E', 'I', 'N'};

for(int i=0; i<8; i++) {

printf("\nEinstein [%d] = %c", i, name[i]);

}

return 0;

#include<stdio.h>

int main() {

const int i = 54;

printf("%d", i);

return 0;

}

Output:

54

346

}

Question 29

Question:

Write a program to print "Hello World" 10 times.

Solution:

#include<stdio.h>

int main() {

for(int i=1; i<=10; i++) {

printf("Hello World \n");

}

return 0;

}

Question 30

Question:

Write a program to print first 5 numbers using do while loop statement.

Solution:

#include<stdio.h>

int main() {

int num[] = {5, 7, 9, 42};

printf("%d", num[0]);

return 0;

}

Output:

5

347

#include<stdio.h>

int main() {

int i =1;

do {

printf("%d\n", i++);

} while(i<=5);

return 0;

}

Question 31

Question:

Write a program to check whether a character is an alphabet or not.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

int a =2;

if(isalpha(a)) {

printf("The character a is an alphabet");

}

else {

printf("The character a is not an alphabet");

}

return 0;

}

#include<stdio.h>

int main () {

char name[9] = {'C', 'P', 'r', 'o', 'g', 'r', 'a', 'm', '\0'};

printf("%s\n", name);

return 0;

}

Output:

CProgram

#include<stdio.h>

#define SIZE 3

int main() {

char names[SIZE][8] = {

"Mary",

"Albert",

"John"

};

int i;

for(i=0; i<SIZE; i++)

puts(names[i]);

return 0;

}

Output:

Mary

Albert

John

348

Question 32

Question:

Write a program to check whether a entered number is even or odd.

Solution:

#include<stdio.h>

int main() {

int a;

printf("Enter any number: ");

scanf ("%d", &a);

if(a%2 == 0) {

printf("The entered number is even");

}

else {

printf("The entered number is odd");

}

return 0;

}

Question 33

Question:

Write a program to print the ASCII value of the given character.

#include<stdio.h>

int main() {

int num[] = {5, 7, 9, 42};

num[0] = 3;

printf("%d", num[0]);

return 0;

}

Output:

3

349

Solution:

#include<stdio.h>

int main() {

char ch ='A';

printf("The ASCII value of %c is: %d", ch, ch);

return 0;

}

Question 34

Question:

Write a program that will print all numbers between 1 to 50 which divided by a specified

number and the remainder will be 2.

Solution:

#include<stdio.h>

int main() {

int x, i;

printf("Enter a number: ");

scanf("%d", &x);

for(i=1; i<=50; i++) {

 if((i%x)==2) {

 printf("%d\n", i);

 }

#include<stdio.h>

int main() {

int i = 25;

printf("%p", &i);

return 0;

}

Program to get the memory

address of a variable "i"

Because it enables bit fields and dynamic

memory allocation, the C programming language

helps with memory management.

350

}

return 0;

}

Question 35

Question:

Write a program to determine whether two numbers in a pair are in ascending or

descending order.

Solution:

#include<stdio.h>

int main() {

int a, b;

printf("\nEnter a pair of numbers (for example 22,12 | 12,22): ");

printf("\nEnter the first number: ");

scanf("%d", &a);

printf("\nEnter the second number: ");

scanf("%d", &b);

if (a>b) {

printf("\nThe two numbers in a pair are in descending order.");

}

else {

printf("\nThe two numbers in a pair are in ascending order.");

}

return 0;

}

351

Question 36

Question:

Write a program that reads two numbers and divides one by the other. Specify "Division

not possible" if that is not possible.

Solution:

#include<stdio.h>

int main() {

int a, b;

float c;

printf("\nEnter the first number: ");

scanf("%d", &a);

printf("\nEnter the second number: ");

scanf("%d", &b);

if(b != 0) {

 c = (float)a/(float)b;

 printf("\n%d/%d = %.1f", a, b, c);

}

else {

 printf("\nDivision not possible.\n");

}

return 0;

}

#include<stdio.h>

int main() {

int a = 6;

float b = 6.0;

if(a == b) {

printf("\na and b are equal");

}

else {

printf("\na and b are not equal");

}

return 0;

}

Output:

a and b are equal

352

Question 37

Question:

Write a program that will print all numbers between 1 to 50 which divided by a specified

number and the remainder is equal to 2 or 3.

Solution:

#include<stdio.h>

int main() {

int x, i;

printf("Enter a number: ");

scanf("%d", &x);

for(i=1; i<=50; i++) {

 if((i%x)==2 || (i%x) == 3) {

 printf("%d\n", i);

 }

}

return 0;

}

Question 38

Question:

Write a program that adds up all numbers between 1 and 100 that are not divisible by 12.

#include<stdio.h>

int main() {

int a = 15, b, c;

b = a = 25;

c = a < 25;

printf ("\na = %d b = %d c = %d", a, b, c);

return 0;

}

Output:

a = 25 b = 25 c = 0

353

Solution:

#include<stdio.h>

int main() {

int x =12, i, sum = 0;

for(i=1; i<=100; i++) {

 if((i%x)!= 0) {

 sum += i;

 }

}

printf("\nSum: %d\n", sum);

return 0;

}

Question 39

Question:

Write a program to calculate the value of x where x = 1 + 1/2 + 1/3 + … + 1/50.

Solution:

#include<stdio.h>

int main() {

float x = 0;

for(int i=1; i<=50; i++) {

 x += (float)1/i;

}

printf("Value of x: %.2f\n", x);

#include<stdio.h>

int main() {

int x = 67;

char y = 'C';

if(x == y) {

printf("Albert Einstein");

}

else {

printf("Elsa Einstein");

}

return 0;

}

Output:

Albert Einstein

354

return 0;

}

Question 40

Question:

Write a program that reads a number and find all its divisor.

Solution:

#include<stdio.h>

int main() {

int x, i;

printf("\nEnter a number: ");

scanf("%d", &x);

printf("All the divisor of %d are: ", x);

for(i = 1; i <= x; i++) {

 if((x%i) == 0) {

 printf("\n%d", i);

 }

}

return 0;

}

#include<stdio.h>

int main() {

int a = 20, b = 25;

if(a % 2 == b % 5) {

printf("\nPeru");

}

return 0;

}

Output:

Peru

355

Question 41

Question:

Write a program to find the incremented and decremented values of two numbers.

Solution:

#include<stdio.h>

int main() {

int a, b, c, d, e, f;

a = 10;

b=12;

c=a+1;

d=b+1;

e=a-1;

f=b-1;

printf("\nThe incremented value of a =%d", c);

printf("\nThe incremented value of b =%d", d);

printf("\nThe decremented value of a =%d", e);

printf("\nThe decremented value of b =%d", f);

return 0;

}

Question 42

Question:

Write a program to find square of a entered number using functions.

356

Graph theory is an essential field of study in computer science that

deals with the mathematical modeling and analysis of networks or

graphs. In computer science, graphs are used to represent and analyze

various real-world systems such as communication networks, social

networks, transportation networks, and many others. Graph theory

provides a set of tools and techniques for solving complex problems

that arise in computer science, including algorithm design, network

analysis, data structures, and many others.

Solution:

#include<stdio.h>

int square();

int main() {

int answer;

answer = square();

printf("The square of the entered number is: %d", answer);

return(0);

}

int square() {

int x;

printf("Enter any number: ");

scanf("%d", &x);

return x*x;

}

Question 43

Question:

Write a program that accepts principal amount, rate of interest, time and compute the

simple interest.

Solution:

#include<stdio.h>

#include<stdio.h>

int main() {

int a = 6, b, c;

b = ++a;

c = a++;

printf ("%d %d %d\n", a, b, c);

return 0;

} Output:

8 7 7

357

Question 44

Question:

Write a program that swaps two numbers without using third variable.

Solution:

358

int main() {

int p,r,t,SI;

printf("\nEnter the principal amount: ");

scanf("%d",&p);

printf("\nEnter the rate of interest: ");

scanf("%d",&r);

printf("\nEnter the time: ");

scanf("%d",&t);

SI=(p*r*t)/100;

printf("\nSimple interest is: %d", SI);

return 0;

}

#include<stdio.h>

int main() {

int a, b;

printf("\nEnter the value for a: ");

scanf("%d",&a);

printf("\nEnter the value for b: ");

scanf("%d",&b);

printf("\nBefore swapping: %d %d",a,b);

Mathematical logic and Boolean logic are two
different branches of logic, although they share some
similarities.

The formal study of mathematical reasoning and proof
is what mathematical logic is all about. It includes
propositional logic, predicate logic, set theory, and
other related areas. Mathematical logic is used to
develop rigorous mathematical proofs and to study the
foundations of mathematics.

Boolean logic, on the other hand, is a type of algebraic
logic that deals with the manipulation and evaluation of
logical statements. It is based on the binary values of
true and false, or 1 and 0, and uses logical operators
such as AND, OR, and NOT to combine and
manipulate logical statements. Boolean logic is widely
used in computer science, digital electronics, and other
areas where logical reasoning is important.

To sum up, mathematical logic is concerned with the
study of mathematical reasoning and proof, while
Boolean logic is concerned with the manipulation and
evaluation of logical statements. Both branches of logic
have important applications in various fields, including
computer science and mathematics.

a=a+b;

b=a-b;

a=a-b;

printf("\nAfter swapping: %d %d",a,b);

return 0;

}

Question 45

Question:

Write a program to find the greatest of two entered numbers using pointers.

Solution:

#include<stdio.h>

int main() {

int x, y, *p, *q;

printf("Enter the value for x: ");

scanf("%d", &x);

printf("Enter the value for y: ");

scanf("%d", &y);

p = &x;

q = &y;

if(*p>*q) {

printf("x is greater than y");

}

if(*q>*p) {

printf("y is greater than x");

#include<stdio.h>

int main() {

int a = 15, b = 30;

if(a == b) {

printf("a = b");

}

else if(a > b) {

printf("a > b");

}

else if(a < b) {

printf("a < b");

}

return 0;

}

Output:

a < b

359

}

return 0;

}

Question 46

Question:

Write a program to print the output:

body [b] = b

body [o] = o

body [d] = d

body [y] = y

Solution:

#include <stdio.h>

int main() {

char i;

char body [4] = {'b', 'o', 'd', 'y'};

for(i=0; i<4; i++)

printf("\n body[%c] = %c", body[i] , body[i]);

return 0;

}

#include<stdio.h>

int main() {

int i = 60;

if(i > 70 && i < 100) {

printf("i is greater than 70 and less than 100");

}

else {

printf("%d", i);

}

return 0;

}

Output:

60

360

Question 47

Question:

Write a program to calculate the discounted price and the total price after discount

Given:

If purchase value is greater than 1000, 10% discount

If purchase value is greater than 5000, 20% discount

If purchase value is greater than 10000, 30% discount.

Solution:

#include<stdio.h>

int main() {

double PV;

printf("Enter purchased value: ");

scanf("%lf", &PV);

if(PV>1000) {

printf("\n Discount = %lf", PV* 0.1);

printf("\n Total = %lf", PV - PV* 0.1);

}

else if(PV>5000) {

printf("\n Discount = %lf", PV* 0.2);

printf("\n Total = %lf", PV - PV* 0.2);

}

else {

printf("\n Discount = %lf", PV* 0.3);

printf("\n Total = %lf", PV - PV* 0.3);

}

return 0;

#include<stdio.h>

int main() {

printf("%%15s = %15s\n", "albert");

printf("%%14s = %14s\n", "albert");

printf("%%13s = %13s\n", "albert");

printf("%%12s = %12s\n", "albert");

printf("%%11s = %11s\n", "albert");

printf("%%10s = %10s\n", "albert");

printf(" %%9s = %9s\n", "albert");

printf(" %%8s = %8s\n", "albert");

printf(" %%7s = %7s\n", "albert");

printf(" %%6s = %6s\n", "albert");

printf(" %%5s = %5s\n", "albert");

printf(" %%4s = %4s\n", "albert");

return(0);

}

?

361

}

Question 48

Question:

Write a program to print the first ten natural numbers using while loop statement.

Solution:

#include<stdio.h>

int main() {

int i = 1;

while (i<=10) {

printf("%d\n", i++);

}

return 0;

}

Question 49

Question:

Write a program to shift inputted data by two bits to the left.

#include<stdio.h>

int main() {

int i = 12;

if(i == 12 && i != 0) {

printf("\nHi");

printf("\nEinstein");

}

else {

printf("Bye Elsa");

}

return 0;

}

Output:

Hi

Einstein

362

Solution:

Question 50

Question:

Write a program to shift inputted data by two bits to the Right.

Solution:

363

#include<stdio.h>

int main() {

int x;

printf("Enter the integer from keyboard: ");

scanf("%d",&x);

printf("\nEntered value: %d ",x);

printf("\nThe left shifted data is: %d ", x<<=2);

return 0;

}

#include<stdio.h>

int main() {

int x;

printf("Enter the integer from keyboard: ");

scanf("%d",&x);

printf("\nEntered value: %d ",x);

printf("\nThe right shifted data is: %d ", x>>=2);

return 0;

}

An algorithm is a set of precise, step-by-
step instructions or procedures for solving
a problem or achieving a specific goal.
Algorithms are used in many areas of
science, engineering, and computing,
where they help to automate processes
and enable efficient computation.

An algorithm takes some input and
produces some output, often involving
some form of data manipulation or
transformation. Algorithms are designed
to be efficient and accurate, and they can
be expressed in various forms, such as
Pseudocode, flowcharts, or programming
languages. Algorithms can range in
complexity from simple calculations to
complex machine learning models. Some
examples of algorithms include sorting
algorithms, search algorithms, encryption
algorithms, and optimization algorithms.
The development and analysis of
algorithms are central to the fields of
computer science and mathematics.

Question 51

Question:

Write a program to calculate the exact difference between x and 21. Return three times

the absolute difference if x is greater than 21.

Solution:

#include<stdlib.h>

#include<stdio.h>

int main() {

int x;

printf("Enter the value for x: ");

scanf("%d",&x);

if(x<=21){

 printf("%d", abs(x-21));

 }

else if(x>=21) {

 printf("%d", abs(x-21)*3);

}

return 0;

}

#include<stdio.h>

int main() {

int x = 25, y;

x >= 16 ? (y = 25) : (y = 30);

printf ("\n%d %d", x, y);

return 0;

} Output:

25 25

Because C is a structured (modular) programming

language, programmers can divide their code into smaller

chunks to make it easier to comprehend and, as a result,

make their programs simpler and less redundant.

364

Question 52

Question:

Write a program that reads in two numbers and determine whether the first number is a

multiple of the second number.

Solution:

#include<stdio.h>

int main() {

int x, y;

printf("\nEnter the first number: ");

scanf("%d", &x);

printf("\nEnter the second number: ");

scanf("%d", &y);

if(x % y == 0) {

printf("\n%d is a multiple of %d.\n", x, y);

}

else {

printf("\n%d is not a multiple of %d.\n", x, y);

}

return 0;

}

#include<stdio.h>

int main() {

int x = 10;

(x == 10 ? printf("True") : printf("False"));

return 0;

}
Output:

True

365

Question 53

Question:

Write a program to print the output:

Name of the book = B

Price of the book = 135.00

Number of pages = 300

Edition of the book = 8

using structures.

Solution:

#include<stdio.h>

int main() {

struct book {

char name;

float price;

int pages;

int edition;

};

struct book b1;

b1.name = 'B';

b1.price = 135.00;

b1.pages = 300;

b1.edition = 8;

printf("\n Name of the book = %c", b1.name);

printf("\n Price of the book = %f", b1.price);

printf("\n Number of pages = %d", b1.pages);

printf("\n Edition of the book = %d", b1.edition);

#include<stdio.h>

int main() {

int num, x, y, z;

printf("Enter a three digit number: ");

scanf("%d", &num);

x=num%10;

y=(num/10)%10;

z=(num/100)%10;

printf("%d is the sum of the digits of the number %d.", x+y+z, num);

return 0;

}

Output:

?

366

return 0;

}

Question 54

Question:

Write a program to convert Celsius into Fahrenheit.

Solution:

#include<stdio.h>

int main() {

float fahrenheit, celsius;

celsius = 36;

fahrenheit = ((celsius*9)/5)+32;

printf("\nTemperature in fahrenheit is: %f", fahrenheit);

return 0;

}

Question 55

Question:

Write a program that will examine two inputted integers and return true if either of them

is 50 or if their sum is 50.

367

Solution:

#include<stdio.h>

int main() {

int x, y;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

if(x == 50 || y == 50 || (x + y == 50)) {

 printf("\nTrue");

}

else {

 printf("\nFalse");

}

return 0;

}

Question 56

Question:

Write a program that counts the even, odd, positive, and negative values among eighteen

integer inputs.

Solution:

#include<stdio.h>

int main() {

while(!printf("Albert Einstein")){}

return 0;

}

 Output:

Albert Einstein

368

#include<stdio.h>

int main () {

int x, even = 0, odd = 0, positive = 0, negative = 0;

printf("\nPlease enter 18 numbers:\n");

for(int i = 0; i < 18; i++) {

scanf("%d", &x);

if (x > 0) {

 positive++;

}

if(x < 0) {

 negative++;

}

if(x % 2 == 0) {

 even++;

}

if(x % 2 != 0) {

 odd++;

}

}

printf("\nNumber of even values: %d", even);

printf("\nNumber of odd values: %d", odd);

printf("\nNumber of positive values: %d", positive);

printf("\nNumber of negative values: %d", negative);

return 0;

}

#include<stdio.h>

int main() {

int x = 0, y = 1 ;

if(x == 0) {

(y > 1 ? printf("\nHi") : printf ("\nAlbert"));

}

else {

printf("\nHi Albert!");

}

return 0;

}

Output:

Albert

#include<stdio.h>

int main() {

switch(printf("Albert Einstein")){}

return 0;

}
Output:

Albert Einstein

369

Question 57

Question:

Write a program to check whether the person is a senior citizen or not.

Solution:

#include<stdio.h>

int main() {

int age;

printf("Enter age: ");

scanf("%d", &age);

if(age>=60) {

printf("Senior citizen");

}

else {

printf("Not a senior citizen");

}

return 0;

}

Question 58

Question:

Write a program that reads a student's three subject scores (0-100) and computes the

average of those scores.

#include<stdio.h>

int main() {

int x;

printf("Enter any number: ");

scanf ("%d", &x);

if(x > 100) {

 printf ("\nAlbert");

}

else {

 if(x < 15)

 printf ("\nElsa");

 else

 printf ("\nDavid");

}

return 0;

}

Output:

David

370

Solution:

#include<stdio.h>

int main() {

float score, total_score = 0;

int subject = 0;

printf("Enter three subject scores (0-100):\n");

while (subject != 3) {

scanf("%f", &score);

if(score < 0 || score > 100) {

printf("Please enter a valid score.\n");

}

else {

total_score += score;

subject++;

 }

}

printf("Average score = %.2f\n", total_score/3);

return 0;

}

Question 59

Question:

What results would the following programs produce?

371

#include<stdio.h>

int main() {

for(int i=1; i<=5; i++) {

if(i==3) {

break;

}

printf("%d\n", i);

}

return 0;

}

Solution:

1

2

#include<stdio.h>

int main() {

for(int i=1;i<=5;i++) {

if(i==3) {

goto HAI;

}

printf("\n %d ",i);

}

HAI : printf("\n Linux");

}

#include<stdio.h>

int main() {

int a = 6, b = 4, c;

c = a++ +b;

printf ("\n%d %d %d", a, b, c);

return 0;

}

Output:

7 4 10

#include<stdio.h>

int main() {

int a = 15, b = 4;

float c = (float)a/(float)b;

printf("%d/%d = %.2f\n", a, b, c);

return 0;

}

Output:

15/4 = 3.75

372

Solution:

1

2

Linux

#include<stdio.h>

int main() {

for(; ;) {

printf("This loop will run forever.\n");

}

return 0;

}

Solution:

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

#include<stdio.h>

int main() {

printf("Hello,world!");

return 0;

#include<stdio.h>

int main() {

float i = 5.5;

while(i == 5.5) {

i = i - 0.8;

printf("\n%f", i);

}

return 0;

}

Output:

4.700000

373

printf("Hello,world!");

}

Solution:

Hello,world!

#include<stdio.h>

#include<stdlib.h>

int main () {

printf("linux\n");

exit (0);

printf("php\n");

return 0;

}

Solution:

linux

#include<stdio.h>

int main() {

for(int i=1; i<=5; i++) {

if(i==3) {

continue;

#include<stdio.h>

int main() {

float i = 5.5;

while(i == 5.5) {

printf("\n%f", i);

i = i - 0.8;

}

return 0;

}

Output:

5.500000

374

}

printf("%d\n ", i);

}

return 0;

}

Solution:

1

2

4

5

#include<stdio.h>

int main() {

int a = 10, b = 20, c;

c = (a < b) ? a : b;

printf("%d", c);

return 0;

}

Solution:

10

#include<stdio.h>

int main() {

int a = 6, b = 2;

while(a >= 0) {

a--;

b++;

if(a == b) {

continue;

}

else {

printf("\n%d %d", a, b);

}

}

return 0;

}

Output:

3 5

2 6

1 7

0 8

-1 9

375

#include<stdio.h>

#define A 15

int main() {

int x;

x=A;

printf("%d", x);

return 0;

}

Solution:

15

#include<stdio.h>

#include<stdlib.h>

int main() {

int i;

for(i=1; i <= 3; i++) {

printf((i&1) ? "odd\n" : "even\n");

}

exit(EXIT_SUCCESS);

}

#include<stdio.h>

int main() {

int x = 0;

for (; x ;)

printf ("\nAlbert");

return 0;

}

?

376

Solution:

odd

even

odd

#include<stdio.h>

#include<math.h>

int main() {

double a, b;

a = -2.5;

b = fabs(a);

printf("|%.2lf| = %.2lf\n", a, b);

return 0;

}

Solution:

|-2.50| = 2.50

#include<stdio.h>

#include<stdlib.h>

int main() {

int x=12, y =3;

#include<stdio.h>

int main() {

int x;

float y = 2.0;

switch (x = y + 3) {

 case 5:

 printf("\nAlbert");

 break;

 default:

 printf("\nElsa");

}

return 0;

}

Output:

Albert

377

printf("%d\n", abs(-x-y));

return 0;

}

Solution:

15

#include<stdio.h>

#include<stdlib.h>

int main() {

int x=12, y =3;

printf("%d\n", -(-x-y));

return 0;

}

Solution:

15

#include<stdio.h>

#include<stdlib.h>

#include<stdio.h>

int main() {

int x = 5;

switch (x - 6) {

 case -1 :

 printf("\nAlbert");

 case 0 :

 printf("\nJohn");

 case 1 :

 printf("\nMary");

 default :

 printf("\nJames");

 }

 return 0;

}

Output:

Albert

John

Mary

James

378

int main() {

int x=12, y =3;

printf("%d\n", x-(-y));

return 0;

}

Solution:

15

Question 60

Question:

Write a program to find the size of an array.

Solution:

#include<stdio.h>

int main() {

int num [] = {11, 22, 33, 44, 55, 66};

int n = sizeof(num) / sizeof(num [0]);

printf("Size of the array is: %d\n", n);

return 0;

}

#include<stdio.h>

int main() {

int y[] = {20, 40, 60, 80, 100};

for(int x = 0; x <= 4; x++) {

printf("\n%d", *(y + x));

}

return 0;

}

Output:

20

40

60

80

100

379

Question 61

Question:

Write a program that prints a sequence from 1 to a given integer, inserts a plus sign

between these numbers, and then removes the plus sign at the end of the sequence.

Solution:

#include<stdio.h>

int main () {

int x, i;

printf("\nEnter a integer: \n");

scanf("%d", &x);

if(x>0) {

printf("Sequence from 1 to %d:\n", x);

for(i=1; i<x; i++) {

printf("%d+", i);

}

printf("%d\n", i);

}

return 0;

}

#include<stdio.h>

int main() {

char i[2] = "B";

printf("\n%c", i[0]);

printf("\n%s", i);

return 0;

}

 Output:

B

B

380

Question 62

Question:

Write a program to verify whether a triangle's three sides form a right angled triangle or

not.

Solution:

#include<stdio.h>

int main() {

int a,b,c;

printf("Enter the three sides of a triangle: \n");

scanf("%d %d %d",&a,&b,&c);

if((a*a)+(b*b)==(c*c) || (a*a)+(c*c)==(b*b) || (b*b)+(c*c)==(a*a)) {

printf("Triangle's three sides form a right angled triangle.\n");

}

else {

printf("Triangle's three sides does not form a right angled triangle.\n");

}

return 0;

}

#include<stdio.h>

int main() {

printf("%c", "einstein"[4]);

return 0;

}

Output:

t

381

Question 63

Question:

Write a program that will find the second-largest number among the user's input of three

numbers.

Solution:

#include<stdio.h>

int main() {

int a, b, c;

printf("\nEnter the first number: ");

scanf("%d", &a);

printf("\nEnter the second number: ");

scanf("%d", &b);

printf("\nEnter the third number: ");

scanf("%d", &c);

if(a>b && a>c) {

 if(b>c)

 printf("\n%d is second largest number among three numbers", b);

 else

 printf("\n%d is second largest number among three numbers", c);

}

else if(b>c && b>a) {

 if(c>a)

 printf("\n%d is second largest number among three numbers", c);

 else

 printf("\n%d is second largest number among three numbers", a);

}

else if(a>b)

382

 printf("\n%d is second largest number among three numbers", a);

 else

 printf("\n%d is second largest number among three numbers", b);

 return 0;

}

Question 64

Question:

Write a program to calculate the sum of the two given integer values. Return three times

the sum of the two values if they are equal.

Solution:

#include<stdio.h>

int myfunc();

int main() {

printf("%d", myfunc(3, 5));

printf("\n%d", myfunc(6, 6));

return 0;

}

int myfunc(int a, int b) {

return a == b ? (a + b)*3 : a + b;

}

#include<stdio.h>

int main() {

int x = 53286, y=0, i;

while(x!=0) {

i=x%10;

y=y*10+i;

x/=10;

}

printf("%d", y);

return 0;

}

 Output:

68235

383

Question 65

Question:

Write a program that accepts minutes as input, and display the total number of hours and

minutes.

Solution:

#include<stdio.h>

int main() {

int mins, hrs;

printf("Input minutes: ");

scanf("%d",&mins);

hrs=mins/60;

mins=mins%60;

printf("\n%d Hours, %d Minutes.\n", hrs, mins);

return 0;

}

Question 66

Question:

Write a program to determine whether a positive number entered by the user is a multiple

of three or five.

#include<stdio.h>

int main() {

float num[5] = { 11.5, 12.5, 13.5, 14.5, 15.5 };

printf("%.1f\n", *(num+1));

printf("%.1f\n", *(num+4));

return 0;

} Output:

12.5

15.5

384

Solution:

#include<stdio.h>

int main() {

int x;

printf("\nEnter a number: ");

scanf("%d", &x);

if(x % 3 == 0 || x % 5 == 0) {

printf("True");

}

else {

printf("False");

}

return 0;

}

Question 67

Question:

Write a program to verify whether one of the two entered integers falls within the range

of 100 to 200 included.

Solution:

#include<stdio.h>

int main() {

int x, y;

#include<stdio.h>

#define MULT(i) (i*i)

int main() {

int x = 6;

int a = MULT(x++);

int b = MULT(++x);

printf("\n%d %d", a, b);

return 0;

}

Output:

42 100

385

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

if((x >= 100 && x <= 200) || (y >= 100 && y <= 200)) {

printf("True");

}

else {

printf("False");

}

return 0;

}

Question 68

Question:

Write a program to determine which of the two given integers is closest to the value 100.

If the two numbers are equal, return 0.

Solution:

#include<stdio.h>

#include<stdlib.h>

int myfunc();

int main() {

printf("%d", myfunc(86, 99));

printf("\n%d", myfunc(55, 55));

#include<stdio.h>

int main() {

char x[] = "Albert";

int i = 0;

while(x[i]) {

printf("%c at %p\n", x[i], &x[i]);

i++;

}

return 0;

}

?

386

printf("\n%d", myfunc(65, 80));

return 0;

}

int myfunc(int a, int b) {

int x = abs(a - 100);

int y = abs(b - 100);

return x == y ? 0 : (x < y ? a : b);

}

Question 69

Question:

Write a program to determine whether a positive number entered by the user is a multiple

of three or five, but not both.

Solution:

#include<stdio.h>

int main() {

int x;

printf("\nEnter a number: ");

scanf("%d", &x);

if(x % 3 == 0 ^ x % 5 == 0) {

printf("True");

}

else {

printf("False");

}

#include<stdio.h>

int main() {

printf("%-9s al\n", "alan");

printf("%-8s al\n", "alan");

printf("%-7s al\n", "alan");

printf("%-6s al\n", "alan");

printf("%-5s al\n", "alan");

printf("%-4s al\n", "alan");

return 0;

}

?

387

return 0;

}

Question 70

Question:

Write a program to determine whether two entered non-negative numbers have the same

last digit.

Solution:

#include<stdio.h>

#include<stdlib.h>

int main() {

int x, y;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

if(abs(x % 10) == abs(y % 10)) {

printf("True");

}

else {

printf("False");

}

return 0;

}

#include<stdio.h>

#include<ctype.h>

int main() {

char x;

x = getchar();

if(islower(x)) {

putchar(toupper(x));

}

else {

putchar(tolower(x));

}

return 0;

} ?

388

Question 71

Question:

Write a program to determine whether a given non-negative number is a multiple of 12 or

it is one more than a multiple of 12.

Solution:

#include<stdio.h>

#include<stdlib.h>

int main() {

int x = 43;

if(x % 12 == 0 || x % 12 == 1) {

printf("True");

}

else {

printf("False");

}

return 0;

}

#include<stdio.h>

int main() {

printf(6 + "Albert Einstein");

return 0;

}

 Output:

Einstein

389

Question 72

Question:

Write a program that accepts two integers and returns true when one of them equals 6, or

when their sum or difference equals 6.

Solution:

#include<stdio.h>

#include<stdlib.h>

int main() {

int x, y;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

if(x == 6 || y == 6 || x + y == 6 || abs(x - y) == 6) {

printf("True");

}

else {

printf("False");

}

return 0;

}

#include<stdio.h>

int main() {

printf("%f\n", (float)(int)10.5 / 4);

return 0;

}

Output:

2.500000

390

Question 73

Question:

Write a program to check whether it is possible to add two integers to get the third

integer from three entered integers.

Solution:

#include<stdio.h>

int main() {

int x, y, z;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

printf("\nEnter the value for z: ");

scanf("%d", &z);

if(x == y + z || y == x + z || z == x + y) {

printf("True");

}

else {

printf("False");

}

return 0;

}

#include<stdio.h>

int myfunc();

int main() {

printf("\nAlbert Einstein");

myfunc();

return 0;

}

int myfunc() {

printf("\nElsa Einstein");

main();

}

?

391

Question 74

Question:

Write a program that converts kilometers per hour to miles per hour.

Solution:

#include<stdio.h>

int main() {

float kmph;

printf("Enter kilometers per hour: ");

scanf("%f", &kmph);

printf("\n%f miles per hour", (kmph * 0.6213712));

return 0;

}

Question 75

Question:

Write a program to calculate area of an ellipse.

Solution:

#include<stdio.h>

#define PI 3.141592

#include<stdio.h>

int main() {

printf("Albert Einstein\n");

main();

return 0;

}

 ?

392

Question 76

Question:

Write a program to calculate the sum of three given integers. Return the third value if the

first two values are equal.

Solution:

#include<stdio.h>

int myfunc();

int main() {

printf("\n%d", myfunc(11, 11, 11));

printf("\n%d", myfunc(11, 11, 16));

printf("\n%d", myfunc(18, 15, 10));

return 0;

}

int myfunc(int a, int b, int c) {

if (a == b && b == c) return 0;

393

int main() {

float major, minor;

printf("\nEnter length of major axis: ");

scanf("%f", &major);

printf("\nEnter length of minor axis: ");

scanf("%f", &minor);

printf("\nArea of an ellipse = %0.4f", (PI * major * minor));

return 0;

}

Data structures are ways of organizing and storing data in a
computer program or system, so that it can be accessed and used
efficiently. They provide a way to manage and manipulate data in
a more organized and efficient manner, which is important for
many computer applications that deal with large amounts of data.

There are many different types of data structures, each with their
own strengths and weaknesses. Some common examples of data
structures include arrays, linked lists, stacks, queues, trees, graphs,
and hash tables. Each of these data structures has different
properties, such as the way they store and access data, the
complexity of their operations, and their suitability for different
types of applications.

Choosing the right data structure for a given problem is an
important part of designing efficient algorithms and software
systems. By selecting the appropriate data structure, developers
can improve the performance, scalability, and maintainability of
their applications, and provide better user experiences for their
users

if (a == b) return c;

if (a == c) return b;

if (b == c) return a;

else return a + b + c;

}

Question 77

Question:

Write a program to convert bytes to kilobytes.

Solution:

#include<stdio.h>

int main() {

printf("\nEnter number of bytes: ");

printf("\nKilobytes: %.2lf", (bytes/1024));

return 0;

}

#include<stdio.h>

#include<stdlib.h>

int main() {

int x = 1;

x++;

if(x <= 6) {

printf("\nC language");

exit(0);

main();

}

return 0;

}

Output:

C language

394

double bytes;

scanf("%lf",&bytes);

Question 78

Question:

Write a program to convert megabytes to kilobytes.

Solution:

#include<stdio.h>

int main() {

double megabytes, kilobytes;

printf("\nInput the amount of megabytes to convert: ");

scanf("%lf",&megabytes);

kilobytes = megabytes * 1024;

printf("\nThere are %lf kilobytes in %lf megabytes.", kilobytes, megabytes);

return 0;

}

Question 79

Question:

Write a program to count the number of even elements in an integer array.

Solution:

#include<stdio.h>

395

int main() {

int array[1000], i, arr_size, even=0;

printf("Input the size of the array: ");

scanf("%d", &arr_size);

printf("Enter the elements in array: \n");

for(i=0; i<arr_size; i++) {

scanf("%d",&array[i]);

}

for(i=0; i<arr_size; i++) {

if(array[i]%2==0) {

 even++;

}

}

printf("Number of even elements: %d", even);

return 0;

}

Question 80

Question:

Write a program to count the number of odd elements in an integer array.

Solution:

#include<stdio.h>

int main() {

396

397

#include<stdio.h>

int main() {

int x, y;

Question 81

Question:

Write a program that will accept two integers and determine whether or not they are

equal.

Solution:

int array[1000], i, arr_size, odd=0;

printf("Input the size of the array: ");

scanf("%d", &arr_size);

printf("Enter the elements in array: \n");

for(i=0; i<arr_size; i++) {

return 0;

}

for(i=0; i<arr_size; i++) {

if(array[i]%2!=0) {

odd++;

}

}

printf("Number of odd elements: %d", odd);

scanf("%d",&array[i]);

}

The ability of machines to carry out
operations that ordinarily require human
intelligence, such as speech recognition,
decision-making, and language translation, is
known as artificial intelligence (AI). AI
involves the development of computer
programs and algorithms that can learn from
data and experience to make predictions,
identify patterns, and solve problems. This
includes techniques such as machine
learning, deep learning, natural language
processing, and robotics. AI is a rapidly
evolving field that has the potential to
transform many industries and aspects of
everyday life.

398

#include<stdio.h>

int main() {

int angle1, angle2;

printf("\nEnter the first angle of the triangle: ");

scanf("%d", &angle1);

printf("\nEnter the second angle of the triangle: ");

scanf("%d", &angle2);

printf("\nThird angle of the triangle is: %d", (180 - (angle1 + angle2)));

return 0;

}

Question 82

Question:

Write a program to find the third angle of a triangle if two angles are given.

Solution:

printf("Input the values for x and y: \n");

scanf("%d %d", &x, &y);

if(x == y) {

printf("x and y are equal\n");

}

else {

printf("x and y are not equal\n");

}

return 0;

}

Automated reasoning refers to the use of computer
programs and algorithms to automatically derive
logical conclusions from given premises. The goal of
automated reasoning is to develop techniques that
can automate the process of reasoning and problem-
solving, enabling computers to perform tasks that
would otherwise require human intelligence.

Automated reasoning systems typically use symbolic
logic and formal reasoning methods to analyze the
logical structure of a problem, identify potential
solutions, and generate a proof or a refutation. These
systems can be used in a variety of applications, such
as software verification, theorem proving, expert
systems, and artificial intelligence.

Automated reasoning is a critical component of
many AI systems, particularly in domains that
require advanced logical reasoning and decision-
making, such as medicine, law, and finance. It is also
an active area of research in computer science,
mathematics, and philosophy.

399

#include<stdio.h>

int main() {

printf("\n%d is a not leap year.", year);

}

else if((year % 4) == 0) {

printf("\n%d is a leap year.", year);

}

else {

printf("\n%d is not a leap year.", year);

}

return 0;

}

int year;

printf("Enter the year: ");

scanf("%d", &year);

if((year % 400) == 0) {

printf("\n%d is a leap year.", year);

}

else if((year % 100) == 0) {

Question 83

Question:

Write a program to determine whether a particular year is a leap year or not.

Solution:

Computer vision is a field of artificial intelligence and
computer science that focuses on enabling machines to
interpret and understand visual information from the
world around them. It involves the development of
algorithms and techniques that allow computers to
analyze, process, and interpret digital images and
videos.

Computer vision encompasses a range of tasks,
including object detection and recognition, facial
recognition, image segmentation, scene reconstruction,
and motion analysis. It is used in a variety of
applications, such as autonomous vehicles, surveillance
systems, medical imaging, and augmented reality.

The primary goal of computer vision is to enable
machines to replicate and improve upon the abilities of
human vision, allowing them to perceive, interpret, and
understand the visual world in ways that were
previously impossible. It is a rapidly evolving field that
combines expertise from computer science,
mathematics, physics, and neuroscience.

Question 84

Question:

Write a program that reads the candidate's age and determine a candidate's eligibility to

cast his own vote.

Solution:

#include<stdio.h>

int main() {

int age;

printf("\nEnter the age of the candidate: ");

scanf("%d",&age);

if(age<18) {

printf("\nWe apologize, but the candidate is not able to cast his vote.");

printf("\nAfter %d year, the candidate would be able to cast his vote.", (18-

age));

}

else {

printf("Congratulation! the candidate is qualified to cast his vote.\n");

}

return 0;

}

#include<stdio.h>

int main() {

char *x = "Albert Einstein\n";

while(putchar(*x++));

return 0;

}

Output:

Albert Einstein

400

#include<stdio.h>

int main() {

Question 85

Question:

Write a program to Convert Yard to Foot.

Solution:

 #include<stdio.h>

int main() {

float yard;

printf("\nEnter the Length in Yard : ");

scanf("%f", &yard);

printf("\n%f Yard in Foot is: %f", yard, (3*yard));

return 0;

}

Question 86

Question:

Write a program to convert gigabytes to megabytes.

Solution:

401

Soft computing is a subfield of artificial
intelligence that aims to mimic the human
brain's ability to learn and make decisions
in uncertain or incomplete environments.
It is characterized by its ability to handle
imprecise or uncertain information, such
as fuzzy logic, neural networks, genetic
algorithms, and other probabilistic and
statistical techniques. The goal of soft
computing is to develop computational
techniques that can efficiently solve
complex problems in various domains,
including engineering, finance, healthcare,
and others. The approach is particularly
useful in situations where traditional rule-
based methods are not effective or where
there is a lack of complete information.

double gigabytes, megabytes;

printf("\nInput the amount of gigabytes to convert: ");

scanf("%lf", &gigabytes);

megabytes = gigabytes*1024;

printf("\nThere are %lf megabytes in %lf gigabytes.", megabytes, gigabytes);

return 0;

}

Question 87

Question:

Write a program to Convert Kilogram to Pounds.

Solution:

#include<stdio.h>

int main() {

float kg, lbs;

printf("\nEnter Weight in Kilogram: ");

scanf("%f", &kg);

lbs = kg*2.20462;

printf("\n%f Kg = %f Pounds", kg, lbs);

return 0;

}

402

Question 88

Question:

Write a program to Convert Kilogram to Ounce.

Solution:

#include<stdio.h>

int main() {

float kg, ounce;

printf("\nEnter Weight in Kilogram: ");

scanf("%f", &kg);

ounce = kg*35.274;

printf("\n%f Kg = %f Ounce", kg, ounce);

return 0;

}

Question 89

Question:

Write a program to Convert Pounds to Grams.

Solution:

403

Machine learning is a subfield of artificial
intelligence that involves the development of
algorithms and statistical models that enable
computer systems to automatically improve their
performance on a particular task or problem.
Machine learning algorithms use training data to
learn patterns and relationships in the data, which
are then used to make predictions or decisions on
new, unseen data.

Algorithms for machine learning can be classified
into three categories: supervised learning,
unsupervised learning, and reinforcement learning.
In supervised learning, the algorithm is trained
with a labelled dataset in which the accurate output
is given for each input. In unsupervised learning,
the algorithm is trained on an unlabeled dataset,
and it must discover patterns and structure in the
data without any guidance. Reinforcement learning
involves training an agent to make decisions based
on feedback received from its environment.

Machine learning has applications in a wide range
of fields, including computer vision, natural
language processing, robotics, and finance, among
others. Anomaly detection, regression, grouping,
and classification are just a few of the tasks it is
frequently used for.

#include<stdio.h>

int main() {

float pound, gram;

printf("\nEnter Weight in Pounds: ");

scanf("%f", £);

gram = pound*453.592;

printf("\n%f Pound = %f Grams", pound, gram);

return 0;

}

Question 90

Question:

Write a program to verify whether a triangle is valid or not using angles.

Solution:

#include<stdio.h>

int main() {

int angle1, angle2, angle3, sum;

printf("\nEnter the first angle of the triangle: ");

scanf("%d", &angle1);

printf("\nEnter the second angle of the triangle: ");

scanf("%d", &angle2);

printf("\nEnter the third angle of the triangle: ");

scanf("%d", &angle3);

sum = angle1 + angle2 + angle3;

if(sum == 180) {

404

printf("\nThe triangle is valid.");

}

else {

printf("\nThe triangle is not valid.");

}

return 0;

}

Question 91

Question:

Write a program to add the digits of a two-digit number that is entered by the user.

Solution:

#include<stdio.h>

int main() {

int x, y, sum = 0;

printf("\nEnter a two-digit number: ");

scanf("%d", &x);

y = x;

while(y != 0) {

sum = sum + y % 10;

y = y / 10;

}

printf("\nSum of digits of %d is: %d", x, sum);

return 0;

}

405

Question 92

Question:

Write a program to verify if a character you entered is a vowel or a consonant.

Solution:

#include<stdio.h>

int main() {

char ch;

printf("\nEnter a character: ");

scanf("%c", &ch);

if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u' ||

ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U') {

printf("\n%c is a vowel", ch);

}

else {

printf("\n%c is a consonant", ch);

}

return 0;

}

406

Natural Language Processing (NLP) is a subfield of artificial
intelligence (AI) and computer science that deals with the
interaction between computers and human language. The goal
of NLP is to enable computers to understand, interpret, and
generate human language, both written and spoken.

NLP involves a range of techniques, including statistical and
machine learning algorithms, pattern recognition, semantic
analysis, and computational linguistics. It is used to build
applications such as language translation, sentiment analysis,
speech recognition, chatbots, and question-answering systems,
among others.

NLP is a rapidly evolving field, with new techniques and
applications being developed all the time. Its ultimate goal is
to enable seamless communication between humans and
computers, allowing us to interact with technology in more
natural and intuitive ways.

Question 93

Question:

Write a program to find factorial of a number.

Solution:

#include<stdio.h>

int main() {

int i, fact=1, num;

printf("\nEnter a number: ");

scanf("%d",&num);

for(i=1; i<=num; i++) {

 fact=fact*i;

}

printf("\nFactorial of %d is: %d", num, fact);

return 0;

}

Question 94

Question:

Write a program to print number of days in a month.

Solution:

#include<stdio.h>

#define x 2

int main() {

int i;

for(i=24; i<28; i++) {

printf("%d %% %d = %d\n", i, x, i%x);

}

return 0;

}

Output:

24 % 2 = 0

25 % 2 = 1

26 % 2 = 0

27 % 2 = 1

407

#include<stdio.h>

int main() {

int x[12]={31,28,31,30,31,30,31,31,30,31,30,31}, m;

printf("\nEnter the month number: ");

scanf("%d",&m);

if(m>12 || m<1) {

printf("Invalid input");

}

else if(m==2) {

printf("\nNumber of days in month 2 is either 29 or 28");

}

else {

printf("\nNumber of days in month %d is %d", m, x[m-1]);

}

return 0;

}

Question 95

Question:

Write a program to concatenate two strings.

Solution:

#include<stdio.h>

#include<string.h>

int main() {

char a[1000], b[1000];

#include<stdio.h>

int main() {

char *names[] = {

"Albert",

"Alan",

"John",

"James",

"Mary"

};

int i;

for(i=0;i<5;i++)

puts(*(names+i));

return(0);

}

Output:

Albert

Alan

John

James

Mary

408

printf("\nEnter the first string: ");

scanf("%s", a);

printf("\nEnter the second string: ");

scanf("%s", b);

strcat(a, b);

printf("\nString produced by concatenation is: %s", a);

return 0;

}

Question 96

Question:

Write a program to find maximum between two numbers.

Solution:

#include<stdio.h>

int main() {

int a,b;

printf("Enter two numbers: \n");

scanf("%d%d", &a, &b);

if(a>b) {

printf("\n%d is a maximum number", a);

}

else {

printf("\n%d is a maximum number", b);

}

#include<stdio.h>

int main() {

for(int x=2; x<=25; x=x+2) {

printf("%d\t", x);

}

putchar('\n');

return 0;

}

 ?

409

return 0;

}

Question 97

Question:

Write a program to compare two strings.

Solution:

#include<stdio.h>

#include<string.h>

int main() {

char a[100], b[100];

printf("Enter the first string: \n");

scanf("%s", a);

printf("Enter the second string: \n");

scanf("%s", b);

if (strcmp(a,b) == 0) {

printf("The 2 strings are equal.\n");

}

else {

printf("The 2 strings are not equal.\n");

}

return 0;

}

#include<stdio.h>

int main() {

for(int x=3; x>=1; x--) {

for(int y=1; y<=x; y++) {

printf("%d ", y);

}

printf("*");

}

return 0;

}

#include<stdio.h>

int main() {

puts("Albert Einstein");

return 0;

}

Output:

1 2 3 *1 2 *1 *

Output:

Albert Einstein

410

Question 98

Question:

Write a program to convert the upper case letter to lower case letter.

Solution:

#include<ctype.h>

#include<stdio.h>

int main() {

char ch;

ch = 'G';

printf("%c in lowercase is represented as %c", ch, tolower(ch));

return 0;

}

Question 99

Question:

Write a program to find the quotient and remainder of a entered dividend and divisor.

Solution:

#include<stdio.h>

411

int main() {

int dividend, divisor;

printf("\nEnter dividend: ");

scanf("%d", ÷nd);

printf("\nEnter divisor: ");

scanf("%d", &divisor);

printf("\nQuotient = %d\n", (dividend / divisor));

printf("\nRemainder = %d", (dividend % divisor));

return 0;

}

Question 100

Question:

Write a program to determine the Size of int, float, double and char.

Solution:

#include<stdio.h>

int main() {

printf("Size of char is: %ld byte\n",sizeof(char));

printf("Size of int is: %ld bytes\n",sizeof(int));

printf("Size of float is: %ld bytes\n",sizeof(float));

printf("Size of double is: %ld bytes", sizeof(double));

return 0;

}

412

Question 101

Question:

Write a program to verify the password until it is correct.

Solution:

#include<stdio.h>

int main() {

int pwd, i;

while (i!=0) {

printf("\nEnter the password: ");

scanf("%d",&pwd);

if(pwd==1988) {

printf("The password you entered is correct");

i=0;

}

else {

printf("Incorrect password, try again");

}

printf("\n");

}

return 0;

}

#include<stdio.h>

int main() {

int x, y;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

(x>y)? printf("\nx is greater"): printf("\ny is greater");

return 0;

}

Output:?

#include<stdio.h>

int main() {

int i;

for(i=-3; i<3; i++)

printf("%d ", i);

for(; i>=-3; i--)

printf("%d ", i);

putchar('\n');

return 0;

}

Output:

-3 -2 -1 0 1 2 3 2 1 0 -1 -2 -3

413

Question 102

Question:

Write a program to find absolute value of a number.

Solution:

#include<stdio.h>

#include<stdlib.h>

int main() {

int num;

printf("Input a positive or negative number: \n");

scanf("%d", &num);

printf("\nAbsolute value of |%d| is %d\n", num, abs(num));

return 0;

}

Question 103

Question:

Write a program that will accept a person's height in cm and classify the person based on

it.

Solution:

414

#include<stdio.h>

int main() {

float ht;

printf("\nEnter the height (in cm): ");

scanf("%f", &ht);

if(ht < 150.0) {

printf("Dwarf.\n");

}

else if((ht >= 150.0) && (ht < 165.0)) {

printf("Average Height.\n");

}

else if((ht >= 165.0) && (ht <= 195.0)) {

printf("Taller.\n");

}

else {

printf("Abnormal height.\n");

}

return 0;

}

Question 104

Question:

Write a program to calculate the area of different geometric shapes using switch

statements.

Solution:

#include<stdio.h>

int main() {

int i = 6;

while(i==1)

i = i-3;

printf("%d\n", i);

}

Output:

6

Because the condition is

false, the value of "i" will

be printed instead of the

while loop being executed.

415

416

#include<stdio.h>

int main() {

int choice;

switch(choice) {

float r, l, w, b, h;

printf("\nEnter 1 for area of circle: ");

printf("\nEnter 2 for area of rectangle: ");

printf("\nEnter 3 for area of triangle: ");

printf("\nEnter your choice : ");

scanf("%d", &choice);

case 1:

printf("Enter the radius of the circle: ");

scanf("%f", &r);

printf("\nArea of a circle is: %f", (3.14*r*r));

break;

case 2:

printf("Enter the length and width of the rectangle: \n");

scanf("%f%f", &l, &w);

printf("\nArea of a rectangle is: %f", (l*w));

break;

case 3:

printf("Enter the base and height of the triangle: \n");

scanf("%f%f", &b, &h);

printf("\nArea of a triangle is: %f", (0.5*b*h));

break;

default:

printf("\nPlease enter a number from 1 to 3.");

break;

}

return 0;

}

Robotics is a branch of engineering and computer science
that deals with the design, construction, operation, and use
of robots. Robots are programmable machines that can
carry out tasks autonomously, or with minimal human
intervention.

Robotics involves the integration of various engineering
disciplines, including mechanical engineering, electrical
engineering, and computer science. Robotics applications
can be found in a wide range of industries, from
manufacturing and agriculture to healthcare and space
exploration.

Robots can be classified based on their functionality, such
as industrial robots used for manufacturing, service robots
used in healthcare and hospitality, and military robots used
in defense and surveillance. They can also be classified
based on their mobility, such as wheeled, legged, aerial, or
underwater robots.

The field of robotics is constantly evolving, with
advancements in artificial intelligence, machine learning,
and materials science enabling the development of more
capable and sophisticated robots. Robotics has the
potential to revolutionize various industries and improve
the quality of life for people by automating tedious or
dangerous tasks and enabling new forms of human-robot
collaboration.

Question 105

Question:

Write a program to accept a character from the keyboard and print "Yes" if it is equal to y.

Otherwise print "No".

Solution:

#include<stdio.h>

int main() {

char ch;

printf ("Enter a character: ");

ch = getchar ();

if(ch == 'y' || ch == 'Y') {

printf ("Yes\n");

}

else {

printf ("No\n");

}

return(0);

}

#include<stdio.h>

int main() {

int num[6] = {21, 22, 23, 24, 25, 26};

for(int i = 0; i <= 7; i++) {

printf("\n%d", num[i]);

}

return 0;

}

Output:

21

22

23

24

25

26

-759135232

-1723617269

The garbage values will be

printed after i = 5

417

Question 106

Question:

Write a program that uses bitwise operators to multiply an entered value by four.

Solution:

#include<stdio.h>

int main() {

long x, y;

printf("Enter a integer: ");

scanf("%ld", &x);

y = x;

x = x << 2;

printf("%ld x 4 = %ld\n", y, x);

return 0;

}

Question 107

Question:

Write a program to check whether a number entered by the user is power of 2 or not.

Solution:

#include<stdio.h>

int main() {

for(int x=5; x>=1; x--) {

for(int y=1; y<=x; y++) {

printf("* ");

}

printf("\n");

}

return 0;

}

Output:

* * * * *

* * * *

* * *

* *

*

418

#include<stdio.h>

int main() {

int x;

printf("Enter a number: ");

scanf("%d", &x);

if((x != 0) && ((x &(x - 1)) == 0)) {

printf("\n%d is a power of 2", x);

}

else {

printf("\n%d is not a power of 2", x);

}

return 0;

}

Question 108

Question:

Write a program to determine whether a triangle is scalene, isosceles, or equilateral.

Solution:

#include<stdio.h>

int main() {

int side1, side2, side3;

printf("\nEnter the first side of the triangle: ");

scanf("%d",&side1);

printf("\nEnter the second side of the triangle: ");

#include<stdio.h>

#define A 16

#define B 4

int main() {

printf("A+B: %d\n", A+B);

printf("A-B: %d\n", A-B);

printf("A×B: %d\n", A*B);

printf("A/B: %d\n", A/B);

return 0;

} Output:

A+B: 20

A-B: 12

A×B: 64

A/B: 4

419

scanf("%d",&side2);

printf("\nEnter the third side of the triangle: ");

scanf("%d",&side3);

if(side1 == side2 && side2 == side3) {

printf("\nThe given Triangle is equilateral.");

}

else if(side1 == side2 || side2 == side3 || side3 == side1) {

printf("\nThe given Triangle is isosceles.");

}

else {

printf("\nThe given Triangle is scalene.");

}

return 0;

}

Question 109

Question:

Write a program to print ASCII values of all the letters of the English alphabet from A to Z.

Solution:

#include<stdio.h>

int main() {

int i;

for(i='A'; i<='Z'; i++) {

420

printf("ASCII value of %c = %d\n", i, i);

}

return 0;

}

Question 110

Question:

Write a program to find sum of even numbers between 1 to n.

Solution:

#include<stdio.h>

int main() {

int i, num, sum=0;

printf("Enter a number: ");

scanf("%d", &num);

for(i=2; i<=num; i=i+2) {

sum = sum + i;

}

printf("\nSum of all even number between 1 to %d is: %d", num, sum);

return 0;

}

421

Question 111

Question:

Write a program to find sum of odd numbers between 1 to n.

Solution:

#include<stdio.h>

int main() {

int i, num, sum=0;

printf("Enter a number: ");

scanf("%d", &num);

for(i=1; i<=num; i=i+2) {

sum = sum + i;

}

printf("\nSum of all odd number between 1 to %d is: %d", num, sum);

return 0;

}

Question 112

Question:

Write a program to find maximum number using switch case.

Solution:

422

Networking refers to the process of connecting different
devices, systems, and networks together in order to
facilitate communication and information exchange. It
involves the use of various hardware and software
technologies, protocols, and standards to enable devices
to communicate with each other and access shared
resources.

Networking can take place at different levels, such as
local area networks (LANs) that connect devices within a
single location, wide area networks (WANs) that connect
devices across different locations, and the internet, which
is a global network of networks that allows devices to
communicate with each other across different geographic
locations.

Networking technologies include wired and wireless
communication technologies such as Ethernet, Wi-Fi,
and Bluetooth, as well as network protocols such as
TCP/IP, HTTP, and DNS. Networking also involves the
use of networking hardware such as routers, switches,
and hubs to connect devices and manage network traffic.

Networking has become an essential component of
modern computing, enabling businesses, governments,
and individuals to communicate and exchange
information across different locations and devices. It has
revolutionized various industries, from finance and
healthcare to education and entertainment, and continues
to evolve with the development of new technologies such
as 5G and the Internet of Things (IoT).

#include<stdio.h>

int main() {

int x, y;

printf("Enter any two numbers: \n");

scanf("%d%d", &x, &y);

switch(x > y) {

case 0: printf("%d is Maximum number", y);

break;

case 1: printf("%d is Maximum number", x);

break;

}

return 0;

}

Question 113

Question:

Write a program that allows you to enter the cost price and the selling price of a product

and calculate profit or loss.

Solution:

#include<stdio.h>

int main() {

int cp, sp;

printf("\nInput Cost Price: ");

scanf("%d", &cp);

#include<stdio.h>

int main() {

for(int i=5; i>=0; i=i-1) {

printf("%d\n", i);

}

return 0;

}
Output:

5

4

3

2

1

0

423

printf("\nInput Selling Price: ");

scanf("%d", &sp);

if(sp > cp) {

printf("Profit = %d", (sp - cp));

}

else if(cp > sp) {

printf("Loss = %d", (cp - sp));

}

else {

printf("No Profit No Loss.");

}

return 0;

}

Question 114

Question:

Write a program that display the pattern like a right angle triangle using an asterisk.

Solution:

#include<stdio.h>

int main() {

int rows;

printf("Input the number of rows: ");

scanf("%d", &rows);

for(int x=1; x<=rows; x++) {

#include<stdio.h>

int main() {

int x[25], a;

for(a = 0; a <= 24; a++);

{

x[a] = a;

printf("\n%d", x[a]);

}

return 0;

}

Output:

25

424

for(int y=1; y<=x; y++)

printf("*");

printf("\n");

}

return 0;

}

Question 115

Question:

Write a program that display the pattern like a right angle triangle using a number.

Solution:

#include<stdio.h>

int main() {

int rows;

printf("Input the number of rows: ");

scanf("%d",&rows);

for(int x=1; x<=rows; x++) {

for(int y=1; y<=x; y++)

printf("%d", y);

printf("\n");

}

return 0;

}

#include<stdio.h>

static int b;

int main() {

static int c;

printf("%d %d", b, c);

return 0;

}

Output:

0 0

425

Question 116

Question:

Write a program to determine the number and sum of all integers between 50 and 100

which are divisible by 2.

Solution:

#include<stdio.h>

int main() {

int x, sum=0;

printf("Numbers between 50 and 100, divisible by 2: \n");

for(x=51; x<100; x++) {

if(x%2==0) {

printf("%5d", x);

sum+=x;

}

}

printf("\nThe sum: %d", sum);

return 0;

}

#include<stdio.h>

int main() {

int z[] = { 1, 40, 1, 80, 6 };

int y, *x;

x = z;

for(y = 0; y <= 4; y++) {

printf("\n%d", *x);

x++;

}

return 0;

}

Output:

1

40

1

80

6

426

Question 117

Question:

Write a program that uses the function to determine whether a entered number is even or

odd.

Solution:

#include<stdio.h>

int myfunc(int x) {

return (x & 1);

}

int main() {

int x;

printf("Enter any number: ");

scanf("%d", &x);

if(myfunc(x)) {

printf("\nThe number you entered is odd.");

}

else {

printf("\nThe number you entered is even.");

}

return 0;

}

#include<stdio.h>

#include<math.h>

int main() {

printf("%f\n", log(50.0));

return 0;

}

Output:

3.912023

#include<stdio.h>

int main() {

printf("Enter a character: ");

int c = getchar();

printf("You have entered the character '%c'.\n", c);

return 0;

}

?

427

Question 118

Question:

Write a program to find square root of an entered number.

Solution:

#include<stdio.h>

#include<math.h>

int main() {

int x;

printf("Enter any number: ");

scanf("%d",&x);

printf("Square root of %d is %.2lf", x, sqrt(x));

return 0;

}

Question 119

Question:

Write a program to find power of a entered number using library function.

Solution:

#include<stdio.h>

428

Question 120

Question:

Write a program to determine if the character entered is an alphabetic or numeric

character.

429

#include<math.h>

int main() {

int x, y;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

printf("\n%d^%d = %ld", x, y, (long)pow(x,y));

return 0;

}

#include<stdio.h>

int main() {

Solution: printf("\"Hi,\" Albert, \"Elsa!\"\n");

return 0;
#include<stdio.h>

#include<ctype.h>

int main() {

char ch;

printf("Enter a character: ");

scanf("%c", &ch);

if(isdigit(ch)) {

printf("\n%c is a Digit", ch);

}

}

Output:

"Hi," Albert, "Elsa!"

Evolutionary computing is a subfield of artificial
intelligence and computational intelligence that uses
evolutionary algorithms to solve complex optimization
problems. It is inspired by the process of natural
selection and evolution in biological organisms, and it
aims to mimic these processes in order to find optimal
solutions to a wide range of problems.

Evolutionary computing typically involves the use of
genetic algorithms, which are a type of optimization
algorithm that uses principles of natural selection and
genetics to evolve a population of potential solutions to
a problem. The algorithm generates a population of
candidate solutions, which are then evaluated and
selected for reproduction based on their fitness or
quality. Through a process of mutation, crossover, and

selection, the algorithm evolves the population towards
better solutions over successive generations.

Evolutionary computing has applications in various
domains, including engineering, finance, biology, and
artificial life. It can be used to solve problems such as
optimization, scheduling, design, and control, among
others. The approach is particularly useful in situations
where traditional optimization techniques are not
effective, or when there are complex, multi-objective
optimization problems to be solved.

else if(isalpha(ch)) {

printf("\n%c is an Alphabet", ch);

}

else {

printf("\n%c is not an Alphabet, or a Digit", ch);

}

return 0;

}

Question 121

Question:

Write a program to determine whether the character entered is an alphanumeric character

or not.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

char a;

printf("Enter a character: ");

scanf("%c", &a);

if(isalnum(a)) {

printf("\n%c is an alphanumeric character.", a);

}

else {

#include<stdio.h>

int main() {

printf("The Sum is: %f\n",16.0+17);

return 0;

}

Output:

The Sum is: 33.000000

430

printf("\n%c is NOT an alphanumeric character.", a);

}

return 0;

}

Question 122

Question:

Write a program to determine whether the character entered is an punctuation character

or not.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

char a;

printf("Enter a character: ");

scanf("%c", &a);

if(ispunct(a)) {

printf("\n%c is an punctuation character.", a);

}

else {

printf("\n%c is NOT an punctuation character.", a);

}

return 0;

}

#include<stdio.h>

#define SIZE 6

int main() {

char name[SIZE];

printf("Enter your name: ");

fgets(name, SIZE, stdin);

printf("Pleased to meet you, %s.", name);

return 0;

}

?

431

Question 123

Question:

Write a program to check whether the entered character is a graphic character or not.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

char a;

printf("Enter a character: ");

scanf("%c", &a);

if(isgraph(a)) {

printf("\n%c is a graphic character.", a);

}

else {

printf("\n%c is NOT a graphic character.", a);

}

return 0;

}

#include<stdio.h>

int main() {

static int x[8];

for(int i = 0; i <= 7; i++)

printf("\n%d", x[i]);

return 0;

}

Output:

0

0

0

0

0

0

0

0

432

Question 124

Question:

Write a program to list all printable characters using isprint() function.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

int i;

for(i = 1; i <= 127; i++)

if(isprint(i)!= 0)

printf("%c ", i);

return 0;

}

Question 125

Question:

Write a program to check whether the entered character is a hexadecimal digit character

or not.

Solution:

#include<stdio.h>

int main() {

float i = 6.1 ;

switch (i) {

 case 0.1 :

 printf("\nAlan"); break;

 case 2.1 :

 printf("\nJohn"); break;

 case 4.1 :

 printf("\nMary"); break;

 case 6.1 :

 printf("\nAlbert");

 }

 return 0;

}

Error

In the switch condition,

"i" is not an integer. We

cannot test floats in

switch statements.

433

#include<stdio.h>

#include<ctype.h>

int main() {

int i;

printf("The ASCII value of all control characters are: \n");

Question 126

Question:

Write a program to print ASCII value of all control characters.

Solution:

434

printf("\n%c is a hexadecimal digit character.", a);

}

else {

printf("\n%c is NOT a hexadecimal digit character.", a);

}

return 0;

}

#include<ctype.h>

int main() {

char a;

printf("Enter a character: ");

scanf("%c", &a);

if(isxdigit(a)) {

#include<stdio.h>
Computer security refers to the
protection of computer systems and
networks from unauthorized access,
theft, damage, or other malicious
attacks. It involves implementing
various measures such as firewalls,
encryption, antivirus software, access
controls, and intrusion detection
systems to safeguard computers and
networks from security threats. The
goal of computer security is to ensure
the confidentiality, integrity, and
availability of information stored on
or transmitted through computer
systems and networks. Computer
security is important for individuals,
businesses, governments, and other
organizations that rely on computers
to store and process sensitive data.

for(i=0; i<=127; i++) {

if(iscntrl(i)!=0)

printf("\n %d ", i);

}

return 0;

}

Question 127

Question:

Write a program to check whether the entered character is a white-space character or not.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

char c;

printf("Enter a character: ");

scanf("%c", &c);

if(isspace(c) == 0) {

printf("Not a white-space character.");

}

else {

printf("White-space character.");

}

return 0;

#include<stdio.h>

int main() {

if(printf("Albert Einstein")){}

return 0;

}

Output:

Albert Einstein

#include<stdio.h>

typedef int var;

var main() {

var i = 6;

printf("%d + %d = %d\n", i, i, i+i);

return 0;

}

Output:

6 + 6 = 12

435

}

Question 128

Question:

Write a program to illustrate isprint() and iscntrl() functions.

Solution:

#include<stdio.h>

#include<ctype.h>

int main() {

char ch = 'a';

if(isprint(ch)) {

printf("\n%c is printable character.", ch);

}

else {

printf("\n%c is not printable character.", ch);

}

if(iscntrl(ch)) {

printf("\n%c is control character.", ch);

}

else {

printf("\n%c is not control character.", ch);

}

return (0);

436

}

Question 129

Question:

Write a program to calculate surface area of cube.

Solution:

#include<stdio.h>

int main() {

int side;

long area;

printf("\nEnter the side of cube: ");

scanf("%d", &side);

area = 6*side*side;

printf("\nThe surface area of cube is: %ld", area);

return 0;

}

Question 130

Question:

Write a program to subtract 2 numbers without using subtraction operator.

#include<stdio.h>

int main() {

char name[10];

printf("Enter your name: ");

fgets(name,10,stdin);

printf("Pleased to meet you, %s.\n",name);

return 0;

}

 ?

437

Solution:

#include<stdio.h>

#include<stdlib.h>

int main() {

int x =6, y=3;

printf("%d", x+(~y)+1);

return 0;

}

Question 131

Question:

Write a program to add 2 numbers without using addition operator.

Solution:

#include<stdio.h>

#include<stdlib.h>

int main() {

int x =6, y=3;

printf("%d", x-(~y)-1);

return 0;

}

#include<stdio.h>

int main() {

int i;

for(i=0; i<5; i=i+1, printf("%d\n", i));

return(0);

}
Output:

1

2

3

4

5

#include<stdio.h>

int main() {

for(int i=12; i<=15; i=i+1) {

printf("%d\t", i);

}

putchar('\n');

return 0;

}

Output:

12 13 14 15

438

Question 132

Question:

Write a program to multiply a number by 2 without using multiplication operator.

Solution:

#include<stdio.h>

int main() {

int x=2;

printf("%d", x<<1);

return 0;

}

Question 134

Question:

Write a program to divide a number by 2 without using division operator.

Solution:

#include<stdio.h>

int main() {

int x=12;

printf("%d", x>>1);

#include<stdio.h>

int main() {

printf("%d\n", 49);

printf("%1.2f\n",3.15698222);

printf("%d\n", 496596);

printf("%1.1f\n",0.00056);

return 0;

}

Output:

49

3.16

496596

0.0

439

return 0;

}

Question 135

Question:

Write a program to calculate volume of sphere.

Solution:

#include<stdio.h>

int main() {

int radius;

float PI = 3.141592;

printf("\nEnter the radius of sphere: ");

scanf("%d", &radius);

float volume = (4/3)*(PI*radius*radius*radius);

printf("\nThe volume of sphere is: %f", volume);

return 0;

}

Question 136

Question:

Write a program to calculate volume of ellipsoid.

#include<stdio.h>

int main() {

printf("Enter a character: ");

int c = getc(stdin);

printf("You have entered the character '%c'.\n",c);

return 0;

}

?

440

Solution:

#include<stdio.h>

int main() {

int r1, r2, r3;

float PI = 3.141592;

printf("\nEnter the radius of the ellipsoid of axis 1: ");

scanf("%d", &r1);

printf("\nEnter the radius of the ellipsoid of axis 2: ");

scanf("%d", &r2);

printf("\nEnter the radius of the ellipsoid of axis 3: ");

scanf("%d", &r3);

float volume = (4/3)*(PI*r1*r2*r3);

printf("\nThe volume of ellipsoid is: %f", volume);

return 0;

}

Question 137

Question:

Write a program that uses a for loop to determine power of a number entered by the

user.

Solution:

#include<stdio.h>

441

int main() {

int x, y;

long power = 1;

printf("\nEnter the value for x: ");

scanf("%d", &x);

printf("\nEnter the value for y: ");

scanf("%d", &y);

for(int i=1; i<=y; i++) {

power = power * x;

}

printf("%d ^ %d = %ld", x, y, power);

return 0;

}

Question 138

Question:

Write a program to read three numbers and find average of numbers.

Solution:

#include<stdio.h>

int main() {

int a,b,c;

float avg;

printf("\nEnter the first number: ");

scanf("%d", &a);

printf("\nEnter the second number: ");

#include<stdio.h>

int main() {

int x, y;

x = 14;

y = x + 3;

if(x < y) {

printf("%d is greater than %d\n", x, y);

}

return(0);

}

Output:

14 is greater than 17

442

Question 139

Question:

Write a program to read integer "n" and print first three powers (n1, n2, n3).

443

scanf("%d",&b);

printf("\nEnter the third number: ");

scanf("%d",&c);

avg=(a+b+c)/3.0;

printf("\nAverage of three numbers is: %f", avg);

return 0;

}

#include<stdio.h>

#include<math.h>

int main() {

int n;

printf("\nEnter a number: ");

Solution:

scanf("%d",&n);

printf("%f, %f, %f", pow(n, 1), pow(n, 2), pow(n, 3));

return 0;

}

Cryptography is the practice of securing communication from
third-party intrusion or eavesdropping by converting plain text
into an encoded form that is unintelligible without a secret key.
Cryptography involves using mathematical algorithms and
protocols to transform messages into a secret code that can only be
read by someone who has the key to unlock it. The purpose of
cryptography is to ensure the confidentiality, integrity, and
authenticity of information and to prevent unauthorized access,
modification, or interception of data. Cryptography is used
extensively in computer security to protect sensitive information
such as passwords, credit card numbers, and other personal or
financial data. It is also used in various communication protocols
such as email, instant messaging, and virtual private networks to
ensure secure transmission of information over public networks.

static memory allocation dynamic memory allocation

allocation of memory done at

compilation time and it stays the same

throughout the entire run of the

program

allocation of memory done at the time of

running the program and it increases or

decreases throughout the entire run of the

program and it is released or freed when

not required or used

C Program:

#include<stdio.h>

int main()

{

 FILE *fp;

 fp = fopen("myfiles.txt","w");

 return 0;

}

C Program:

#include<stdio.h>

int main()

{

 FILE *fp;

 fp = fopen("myfiles.txt","w");

 fprintf(fp, "%s", "C Programming");

 return 0;

}

The w means that the file is being opened for writing − and if the file

does not exist then the new file will be created.

create a file named myfiles.txt

The fprintf function writes the text C

Programming to the file myfiles.txt.

444

#include<bits/stdc++.h>

using namespace std;

int main() {

int a = 15, b = 25;

printf("Value of a: %d", a);

printf("\n Value of b: %d", b);

swap(a, b);

printf("\n After swapping, the values are: a = %d, b = %d", a, b);

return 0;

}

Output:

Value of a: 15

 Value of b: 25

After swapping, the values are: a = 25, b = 15

445

Computer architecture refers to the design of computer systems, including their organization, components, and how they

operate together to perform tasks. It encompasses the hardware and software components of a computer system and their

interactions. Computer architecture defines the structure and behavior of a computer system, including the processing units,

memory, input or output devices, and communication protocols between the components.

The architecture of a computer system is critical in determining its performance, power consumption, and overall efficiency.

It is also important for determining the compatibility and interoperability of different hardware and software components.

Computer architecture plays a crucial role in the design and development of computer systems, including desktops, laptops,

servers, and mobile devices. Understanding computer architecture is essential for computer engineers, software developers, and

system administrators who are involved in designing, developing, and maintaining computer systems.

C++ Exercises

In the 1970s, Bjarne Stroustrup, a Danish computer scientist, created the C++ programming

language. The initial name of C++ was "C with classes." By practicing C++ programs, you can

learn the C++ programming language most effectively. An all-purpose programming language is

C++. It offers facilities for low-level memory manipulation together with imperative, object-

oriented, and generic programming features. It is used to create machine learning tools, web

browsers, video games, and operating systems. Examples on fundamental C++ ideas can be

found on this chapter. It is encouraged that you use the programs as references and test the

concepts on your own. Exercises in C++ are a great way to practise programming, develop your

abilities, and learn more about the language.

446

Question 1

Question:

Write a program to print Hello, World!.

Solution:

#include<iostream>

int main() {

std::cout<<"Hello, World!";

return 0;

}

Question 2

Question:

Write a program to compute the perimeter and area of a rectangle.

Solution:

#include<iostream>

using namespace std;

int main() {

#include<iostream>

using namespace std;

int main() {

cout << "Elsa Einstein \n";

cout << "Albert Einstein" << endl;

return 0;

}

Output:

Elsa Einstein

Albert Einstein

447

int height = 8;

int width = 5;

int perimeter = 2*(height + width);

cout<<"Perimeter of the rectangle is: " << perimeter << " cm\n";

int area = height * width;

cout<<"Area of the rectangle is: "<< area << " square cm\n";

return 0;

}

Question 3

Question:

Write a program to compute the perimeter and area of a circle.

Solution:

#include<iostream>

using namespace std;

int main() {

int radius = 4;

float perimeter = 2*3.14*radius;

cout<<"Perimeter of the circle is: " << perimeter << " cm\n";

float area = 3.14*radius*radius;

cout<<"Area of the circle is: "<< area << " square cm\n";

return 0;

}

448

Question 4

Question:

Write a program that accepts two numbers from the user and calculate the sum of the two

numbers.

Solution:

#include<iostream>

using namespace std;

int main() {

float a, b, sum;

cout<<"\nEnter the first number: ";

cin>>a;

cout<<"\nEnter the second number: ";

cin>>b;

sum = a+ b;

cout<<"\nSum of the above two numbers is: "<< sum;

return 0;

}

#include<iostream>

using namespace std;

int main() {

int x= 26; // Now x is 15

x = 56; // Now x is 10

cout << x;

// Output: 56

return 0;

}

449

Question

450

450

#include<iostream>

using namespace std;

int main() {

int a, b, mult;

cout<<"\nEnter the first number: ";

cin>>a;

cout<<"\nEnter the second number: ";

cin>>b;

mult = a * b;

cout<<"\nProduct of the above two numbers is: " << mult;

return 0;

}

Question:

Write a program that accepts two numbers from the user and calculate the product of the

two numbers.

Solution:

Question 6

Question:

Write a program that accepts three numbers and find the largest of three.

A relational database is a type of database management
system (DBMS) that stores and organizes data in tables with
rows and columns. In a relational database, data is stored in
multiple related tables, and the relationships between these
tables are defined by their shared columns or keys. The most
common type of relational database is a Structured Query
Language (SQL) database, which allows users to manipulate
and query the data stored within it using SQL commands.

Relational databases are widely used in business and other
applications to manage large amounts of structured data,
such as customer information, sales records, and inventory
data. They offer several advantages over other types of
databases, including their ability to support complex
relationships between data, their scalability, and their ability
to ensure data consistency and accuracy through the use of
constraints and transaction processing.

451

#include<iostream>

using namespace std;

int main() {

int x, y, z;

cout<<"\nEnter the first number: ";

cin>>x;

cout<<"\nEnter the second number: ";

cin>>y;

cout<<"\nEnter the third number: ";

cin>>z;

// if x is greater than both y and z, x is the largest

if (x >= y && x >= z)

cout<<x<<" is the largest number.";

// if y is greater than both x and z, y is the largest

if (y >= x && y >= z)

cout<<y<<" is the largest number.";

// if z is greater than both x and y, z is the largest

if (z >= x && z >= y)

cout<<z<<" is the largest number.";

return 0;

}

Solution:

Structured storage refers to a type of file system that is designed to
store and manage structured data in a hierarchical and organized manner.
It is commonly used for storing and managing complex data types such
as multimedia files, large text documents, and database files.

Structured storage systems typically use a hierarchical directory
structure to organize data into folders and subfolders, with each folder
containing files that are related to a particular aspect of the data being
stored. These files can be of different sizes, types, and formats, and are
typically stored as binary data. One of the key features of structured
storage is that it allows applications to access data within files without
having to read or write the entire file. This is accomplished by using a
mechanism called "streaming", which allows applications to access
specific sections of a file without loading the entire file into memory.

Structured storage is commonly used in enterprise applications, such as
document management systems, content management systems, and
multimedia applications. It is also used in relational database systems,
where large amounts of structured data are stored in a hierarchical
manner for efficient retrieval and manipulation.

Question

452

452

#include<iostream>

using namespace std;

int main() {

float x, y, z;

cout<<"\nEnter the first number: ";

cin>>x;

cout<<"\nEnter the second number: ";

cin>>y;

cout<<"\nEnter the third number: ";

cin>>z;

if(x < (y+z) && y < (x+z) && z < (y+x)) {

cout<<"\nPerimeter of the triangle is: " << x+y+z;

}

else {

cout<<"\nIt is impossible to form a triangle.";

}

return 0;

}

Question:

Write a program that reads three floating values and check if it is possible to make a

triangle with them. Also calculate the perimeter of the triangle if the entered values are

valid.

Solution:

Data mining is the process of discovering hidden
patterns, correlations, and trends within large sets of
data using statistical and computational methods. It
involves extracting meaningful insights from complex
data sets by using automated or semi-automated
techniques to identify patterns and relationships that
may not be immediately apparent.

Data mining typically involves several steps,
including data cleaning, data integration, data
selection, data transformation, data mining, pattern
evaluation, and knowledge representation. The
process is often iterative, with the results of each
iteration informing subsequent iterations and refining
the final output.

Data mining is used in a wide range of applications,
including marketing and advertising, healthcare,
financial analysis, fraud detection, and scientific
research. It is particularly useful in situations where
there is a large amount of data available, and where
the relationships between the data are complex and
difficult to discern using traditional analytical
techniques.

The insights gained from data mining can be used to
make better business decisions, improve customer
service, reduce costs, and identify new opportunities
for growth and innovation. However, it is important to
use data mining ethically, and to ensure that the
privacy and security of individuals' data are protected.

453

#include<iostream>

using namespace std;

int main() {

int day;

cout<<"\nEnter a number between 1 to 7 to get the day name: ";

cin>>day;

switch(day) {

case 1 : cout<<"Monday\n"; break;

case 2 : cout<<"Tuesday\n"; break;

case 3 : cout<<"Wednesday\n"; break;

case 4 : cout<<"Thursday\n"; break;

case 5 : cout<<"Friday\n"; break;

case 6 : cout<<"Saturday\n"; break;

case 7 : cout<<"Sunday\n"; break;

default : cout<<"Enter a number between 1 to 7.";

}

return 0;

}

Question 8

Question:

Write a program that reads an integer between 1 and 7 and print the day of the week in

English.

Solution:

Compiler theory refers to the study of how programming
languages are translated into machine-readable code by a
compiler. It encompasses a range of topics, including syntax
analysis, semantic analysis, code generation, optimization, and
debugging. There are various steps involved in the compilation
of a program. First, the source code of the program is analyzed
to check for syntax errors and to create a syntax tree that
represents the structure of the program. Next, semantic analysis
is performed to check for semantic errors and to determine the
meaning of the program's constructs. After this, the code is
generated, which involves translating the high-level code into
low-level code that can be executed by the computer. Finally,
the generated code is optimized to improve its performance.

Compiler theory is an important area of study for computer
science and programming, as it is essential for developing
efficient and effective software. It also plays a critical role in
the development of new programming languages, as it provides
insights into the design and implementation of language
constructs and the trade-offs between expressiveness, ease of
use, and performance. Some of the key topics within compiler
theory include parsing algorithms, language design and syntax,
type systems, memory management, optimization techniques,
and debugging and error handling. Advances in compiler theory
have led to significant improvements in the performance and
reliability of software, and have helped to make programming
more accessible and easier to learn for beginners.

Question 9

Question:

Write a program to find the sum of two numbers.

Solution:

#include<iostream>

using namespace std;

int main() {

int a, b, sum;

a=1;

b=2;

sum = a + b;

cout<<"The sum of a and b is: " << sum;

return 0;

}

Question 10

Question:

Write a program to find the square of a number.

Solution:

#include<iostream>

using namespace std;

int main() {

bool x = true;

bool y = false;

cout << x <<endl;

// Output: 1

cout << y<<endl;

// Output: 0

return 0;

}

454

#include<iostream>

#include<cmath>

using namespace std;

int main() {

int a, b;

a=2;

b = pow((a), 2);

cout<<"The square of a is: "<< b;

return 0;

}

Question 11

Question:

Write a program to find the greatest of two numbers.

Solution:

#include<iostream>

using namespace std;

int main() {

int a, b;

a = 2;

b = 3;

if(a>b) {

cout<<"a is greater than b";

}

else {

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x = "Albert";

cout << x[0];

// Output: A

return 0;

}

455

cout<<"b is greater than a";

}

return 0;

}

Question 12

Question:

Write a program to print the average of the elements in the array.

Solution:

#include<iostream>

using namespace std;

int main() {

int i, avg, sum = 0;

int num [5] = {16, 18, 20, 25, 36};

for(i=0; i<5; i++) {

sum = sum + num [i];

avg = sum/5;

}

cout<<"\nSum of the Elements in the array is: "<< sum;

cout<<"\nAverage of the elements in the array is: " << avg;

return 0;

}

456

Question 13

Question:

Write a program that prints all even numbers between 1 and 25.

Solution:

#include<iostream>

using namespace std;

int main() {

cout<<"Even numbers between 1 to 25:\n";

for(int i = 1; i <= 25; i++) {

if(i%2 == 0) {

cout<< i << endl;

}

}

return 0;

}

Question 14

Question:

Write a program that prints all odd numbers between 1 and 50.

Solution:

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x = "Albert";

x[0] = 'E';

cout << x;

// Output: Elbert

return 0;

}

457

#include<iostream>

using namespace std;

int main() {

for(int i=1; i<=10; i++) {

cout<<"Number = " << i << " its square = " << i*i << " its cube = " << i*i*i

<<endl;

}

return 0;

Question 15

Question:

Write a program to print the first 10 numbers starting from one together with their

squares and cubes.

Solution:

458

#include <iostream>

using namespace std;

int main() {

cout<<"Odd numbers between 1 to 50:\n";

for(int i = 1; i <= 50; i++) {

if(i%2 != 0) {

cout<<i<<endl;

}

}

return 0;

}

Quantum computing theory has many potential applications in
computer science, including the ability to solve certain
computational problems exponentially faster than classical
computers. This has significant implications for areas such as
cryptography, optimization, and algorithm design. One of the
most famous quantum algorithms is Shor's algorithm, which
can factor large numbers exponentially faster than the best
known classical algorithm. This has important implications for
cryptography, as many encryption schemes rely on the fact that
factoring large numbers is computationally infeasible. Another
quantum algorithm with significant potential applications is
Grover's algorithm, which provides a quadratic speedup for
searching an unsorted database. This has implications for
database searching, optimization, and machine learning.

Quantum computing theory is also important in the
development of quantum machine learning, which seeks to
develop machine learning algorithms that can take advantage of
the properties of quantum computers. This includes the
development of quantum neural networks, which can learn and
recognize patterns in quantum data. However, quantum
computing theory also poses significant challenges in computer
science, including the issue of error correction and the
development of efficient algorithms that can take advantage of
the unique properties of quantum computers. Many researchers
are working to overcome these challenges and develop practical
applications for quantum computing in computer science.

}

Question 16

Question:

Write a program:

If you enter a character M

Output must be: ch = M.

Solution:

#include<iostream>

using namespace std;

int main() {

char M;

cout<<"Enter any character: ";

cin>>M;

cout<<"ch = "<< M;

return 0;

}

Question 17

Question:

Write a program to print the multiplication table of a number entered by the user.

#include<iostream>

using namespace std;

int main() {

cout << min(15, 60)<<endl;

// Output: 15

cout << max(15, 60)<<endl;

// Output: 60

return 0;

}

459

#include<iostream>

using namespace std;

int main() {

int n, i;

cout<<"Enter any number: ";

cin>>n;

for(i=1; i<=5; i++)

cout<< n <<" * "<< i <<" = "<< n*i <<endl;

return 0;

}

#include<iostream>

using namespace std;

int main() {

int i, product = 1;

for(i=1; i<=10; i++) {

product = product * i;

Solution:

Question 18

Question:

Write a program to print the product of the first 10 digits.

Solution:

460

Computability theory is a branch of computer science and
mathematics that deals with the study of what can be
computed and how effectively it can be computed. It
investigates the limitations of computing machines, the scope
of what can be computed, and the extent to which problems
can be solved algorithmically. One of the main concepts in
computability theory is the notion of computable functions.
A function is said to be computable if there exists an
algorithm that can compute its values for any input. The study
of computable functions leads to the concept of Turing
machines, which are abstract models of computation that can
perform any computation that can be done by any algorithm.
Another important concept in computability theory is the
halting problem. The halting problem asks whether it is
possible to determine, for a given input and program, whether
the program will halt or run indefinitely. The answer to this
problem is no, and it has important implications for the limits
of computability.

Computability theory also investigates the notion of
complexity, which is concerned with the resources required to
solve a given problem. This includes the time required to
compute a solution, as well as the amount of memory or other
resources required. Complexity theory is closely related to
computability theory, as it explores the limits of what can be
efficiently computed. Overall, computability theory is a
fundamental area of computer science and mathematics, with
important applications in areas such as cryptography, artificial
intelligence, and the analysis of algorithms.

}

cout<<"The product of the first 10 digits is: " << product;

return 0;

}

Question 19

Question:

Write a program to print whether the given number is positive or negative.

Solution:

#include<iostream>

using namespace std;

int main() {

int a;

a = -35;

if(a>0) {

cout<<"Number is positive";

}

else {

cout<<"Number is negative";

}

return 0;

}

#include<iostream>

#include<cmath>

using namespace std;

int main() {

cout << sqrt(36) << endl;

// Output: 6

cout << round(6.68) << endl;

// Output: 7

cout << log(4) << endl;

// Output: 1.38629

return 0;

}

461

Question 20

Question:

Write a program to check the equivalence of two numbers entered by the user.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"Enter the first number: ";

cin>>x;

cout<<"Enter the second number: ";

cin>>y;

if(x-y==0) {

cout<<"The two numbers are equivalent";

}

else {

cout<<"The two numbers are not equivalent";

}

return 0;

}

#include<iostream>

using namespace std;

int main() {

cout << (20 > 19);

// Output: 1

return 0;

}

462

Question 21

Question:

Write a program to print the remainder of two numbers entered by the user.

Solution:

#include<iostream>

using namespace std;

int main() {

int a, b, c;

cout<<"Enter the first number: ";

cin>>a;

cout<<"Enter the second number: ";

cin>>b;

c = a % b;

cout<<"The remainder of " << a << " and " << b << " = " << c;

return 0;

}

Question 22

Question:

Write a program to print the characters from A to Z.

463

Solution:

#include<iostream>

using namespace std;

int main() {

char i;

for(i='A'; i<='Z'; i++) {

cout << i << endl;

}

return 0;

}

Question 23

Question:

Write a program to print the length of the entered string.

Solution:

#include<iostream>

#include<string.h>

using namespace std;

int main() {

char str[1000];

cout<<"Enter a string to calculate its length: ";

cin>>str;

cout<<"The length of the entered string is: "<< strlen(str);

return 0;

#include<iostream>

#include<cstring>

using namespace std;

void myfunc(string name, int age) {

cout << name << " John. " << age << " years old. \n";

}

int main() {

myfunc("Albert", 73);

myfunc("Elsa", 14);

myfunc("David", 30);

return 0;

}

?

464

}

Question 24

Question:

Write a program to check whether the given character is a lower case letter or not.

Solution:

#include<iostream>

using namespace std;

int main() {

char ch = 'a';

if(islower(ch))

cout<<"The given character is a lower case letter";

else

cout<<"The given character is a upper case letter";

return 0;

}

Question 25

Question:

Write a program to check whether the given character is a upper case letter or not.

465

Solution:

#include<iostream>

using namespace std;

int main() {

char ch = 'A';

if(isupper(ch))

cout<<"The given character is a upper case letter";

else

cout<<"The given character is a lower case letter";

return 0;

}

Question 26

Question:

Write a program to convert the lower case letter to upper case letter.

Solution:

#include<iostream>

using namespace std;

int main() {

char ch = 'a';

char b = toupper(ch);

466

cout<<"Lower case letter "<<ch<<" is converted to Upper case letter "<<b;

return 0;

}

Question 27

Question:

Write a program that takes a distance in centimeters and outputs the corresponding value

in inches.

Solution:

#include<iostream>

using namespace std;

#define x 2.54

int main() {

double inch, cm;

cout<<"Enter the distance in cm: ";

cin>>cm;

inch = cm / x;

cout<<"\nDistance of "<< cm << " cms is equal to " << inch << " inches";

return 0;

}

467

#include<iostream>

using namespace std;

int main() {

int i;

char name [8] = {'E' , 'I', 'N', 'S', 'T', 'E', 'I', 'N'};

for(i=0; i<8; i++)

cout<<"Einstein ["<< i <<"] = "<< name[i] << endl;

return 0;

}

Question 28

Question:

Write a program to print the output:

Einstein [0] = E

Einstein [1] = I

Einstein [2] = N

Einstein [3] = S

Einstein [4] = T

Einstein [5] = E

Einstein [6] = I

Einstein [7] = N

Solution:

468

Procedural programming is a programming paradigm that is
based on the concept of procedures, also known as subroutines
or functions. A procedure is a group of instructions that
performs a specific task, and can be called or executed from
different parts of a program. In procedural programming, a
program is composed of one or more procedures, which can be
organized into modules or libraries. The procedures are
typically organized in a step-by-step manner, with each
procedure calling other procedures as needed to perform its
task.

The primary focus of procedural programming is on the
procedures themselves, and how they interact with each other
and with the data in a program. Data in a procedural program
is typically organized into data structures, such as arrays,
records, or linked lists. One of the main advantages of
procedural programming is its simplicity and ease of use. It
is often used for small to medium-sized programs, and is
particularly well-suited for applications that involve simple
data processing, such as mathematical calculations or file
manipulation.

However, procedural programming also has some
limitations. As programs become larger and more complex, it
can become difficult to manage the interactions between
procedures and the data in a program. Additionally,
procedural programming is not well-suited for applications
that require complex data structures or that involve user
interfaces. Overall, procedural programming remains an
important programming paradigm, and is still widely used
today in a variety of applications, particularly in the
development of system software and scientific computing.

Question 29

Question:

Write a program to print "Hello World" 10 times.

Solution:

#include<iostream>

using namespace std;

int main() {

for(int i=1; i<=10; i++) {

cout<< "Hello World"<< endl;

}

return 0;

}

Question 30

Question:

Write a program to print first 5 numbers using do while loop statement.

Solution:

#include<iostream>

using namespace std;

469

470

#include<iostream>

using namespace std;

int main() {

int a = 2;

if(isalpha(a)) {

cout<<"The character a is an alphabet";

}

else {

cout<<"The character a is not an alphabet";

}

return 0;

}

Question 31

Question:

Write a program to check whether a character is an alphabet or not.

Solution:

int main() {

int i =1;

do {

cout<<" \ni = "<< i++;

} while(i<=5);

return 0;

}

Formal semantics is a branch of theoretical linguistics that aims to provide a precise mathematical
framework for describing the meaning of natural language expressions. It is concerned with
developing formal models of the structure and interpretation of language, using tools from logic,
mathematics, and computer science. Formal semantics is based on the idea that the meaning of a
sentence can be determined by a set of rules that specify how its component parts combine to form a
complete expression. These rules can be formalized using mathematical notation and logical symbols,
and can be used to generate a precise semantic representation of the sentence. There are several
different approaches to formal semantics, including:

• Model-theoretic semantics: This approach uses mathematical models to represent the meaning
of sentences. The models consist of sets of objects and relations between them, and the meaning
of a sentence is determined by whether it is true or false in the model.

• Type-theoretic semantics: This approach uses type theory to provide a formal description of the
structure of language expressions. Each expression is assigned a type, which describes its
properties and how it can be combined with other expressions.

• Situation semantics: This approach is based on the idea that the meaning of a sentence depends
on the situation in which it is used. The situation is represented as a set of facts, and the meaning
of the sentence is determined by how it relates to these facts.

Formal semantics is used in a range of applications, including natural language processing, machine
translation, and computational linguistics. It provides a rigorous framework for analyzing and
understanding the meaning of language, and has contributed to the development of new theories of
syntax and semantics in linguistics.

471

#include<iostream>

using namespace std;

int main() {

int a;

cout<<"Enter any number: ";

cin>>a;

if(a%2 == 0) {

cout<<"The entered number is even";

}

else {

cout<<"The entered number is odd";

}

return 0;

}

Question 32

Question:

Write a program to check whether a entered number is even or odd.

Solution:

Programming language pragmatics refers to the study of how
programming languages are used in practice, including their
implementation, performance, and design. It focuses on the
practical aspects of programming languages, such as how they
are used to solve real-world problems, and how they interact
with the hardware and operating system on which they are run.
Programming language pragmatics is concerned with a range
of issues related to the use of programming languages, including:

• Language syntax and semantics: How programming

languages are structured and how they express different
kinds of computations.

• Language implementation: How programming languages
are implemented, including issues related to compilers,
interpreters, and runtime environments.

• Language performance: How programming languages
perform in terms of efficiency, memory usage, and other
metrics.

• Language design: How programming languages are
designed to meet the needs of different kinds of applications
and users.

• Language evolution: How programming languages evolve
over time, including the introduction of new features and the
retirement of old ones.

• Language usability: How programming languages are
designed to be easy to use and understand, and how they can
be made more accessible to novice programmers.

Programming language pragmatics is an important area of
study for software developers, as it provides insights into how
different programming languages can be used to solve different
kinds of problems, and how they can be optimized for
performance and ease of use. It is also important for researchers
and educators, as it helps to inform the design and development
of new programming languages and programming curricula.

472

#include<iostream>

using namespace std;

int main() {

char c;

cout << "Enter a character: ";

cin >> c;

cout << "The ASCII Value of " << c << " is " << int(c);

return 0;

}

Question 33

Question:

Write a program to print the ASCII value of the entered character.

Solution:

Question 34

Question:

Write a program that will print all numbers between 1 to 50 which divided by a specified

number and the remainder will be 2.

Solution:

473

#include<iostream>

using namespace std;

int main() {

int a, b;

cout<<"\nEnter a pair of numbers (for example 22,12 | 12,22): ";

cout<<"\nEnter the first number: ";

Question 35

Question:

Write a program to determine whether two numbers in a pair are in ascending or

descending order.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, i;

cout<<"Enter a number: ";

cin>>x;

for(i=1; i<=50; i++) {

if((i%x)==2) {

cout<<i<<endl;

}

}

return 0;

}

Programming language theory is the study of the fundamental concepts and
principles that underlie the design and implementation of programming languages. It
is concerned with understanding how programming languages work, how they are
structured, and how they can be used to express different kinds of computations.
Programming language theory encompasses a wide range of topics, including:

• Syntax and semantics: How programming languages are structured and how
they express different kinds of computations.

• Types and type systems: How programming languages deal with data types, and
how type systems can be used to ensure program correctness and safety.

• Formal methods: How mathematical techniques can be used to formally reason
about the behavior of programs written in different programming languages.

• Concurrency and parallelism: How programming languages can be designed to
handle concurrent and parallel execution, including issues related to
synchronization, communication, and resource management.

• Logic programming: How programming languages based on mathematical logic
can be used to express and reason about complex systems.

• Functional programming: How programming languages based on the principles
of functional programming can be used to express complex computations in a
concise and elegant way.

Programming language theory is an important area of study for computer science
researchers, as it provides a theoretical foundation for the design and implementation
of programming languages. It also plays an important role in the development of new
programming languages and the advancement of programming practices, including
the development of new programming paradigms and techniques.

cin>>a;

cout<<"\nEnter the second number: ";

cin>>b;

if (a>b) {

cout<<"\nThe two numbers in a pair are in descending order.";

}

else {

cout<<"\nThe two numbers in a pair are in ascending order.";

}

return 0;

}

Question 36

Question:

Write a program that reads two numbers and divides one by the other. Specify "Division

not possible" if that is not possible.

Solution:

#include<iostream>

using namespace std;

int main() {

int a, b;

float c;

cout<<"\nEnter the first number: ";

cin>>a;

cout<<"\nEnter the second number: ";

474

cin>>b;

if(b != 0) {

 c = (float)a/(float)b;

 cout<<a<<"/"<<b<<" = "<< c;

}

else {

 cout<<"\nDivision not possible.\n";

}

return 0;

}

Question 37

Question:

Write a program that will print all numbers between 1 to 50 which divided by a specified

number and the remainder is equal to 2 or 3.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, i;

cout<<"Enter a number: ";

cin>>x;

for(i=1; i<=50; i++) {

 if((i%x)==2 || (i%x) == 3) {

 cout<<i<<endl;

475

476

#include<iostream>

using namespace std;

int main() {

int x =12, i, sum = 0;

for(i=1; i<=100; i++) {

if((i%x)!= 0) {

sum += i;

}

}

cout<<"\nSum: "<<sum;

return 0;

}

Question 38

Question:

Write a program that adds up all numbers between 1 and 100 that are not divisible by 12.

Solution:

}

}

return 0;

}

Software engineering is the systematic process of designing,
developing, testing, and maintaining software. It is a discipline that
applies engineering principles to the creation of software products and
systems, with the goal of developing high-quality, reliable, and efficient
software that meets the needs of users and stakeholders.

Software engineering involves a range of activities, including
requirements analysis, software design, coding, testing, and maintenance.
It also includes project management and quality assurance activities,
such as software configuration management, software metrics, and
software process improvement.

The software engineering process typically involves several phases,
such as planning, requirements gathering, design, implementation,
testing, and deployment. Each of these phases is essential to ensuring
that the software is developed to meet the needs of users and
stakeholders, is of high quality, and can be maintained over time.

Software engineering is a complex and interdisciplinary field, with
many sub-disciplines, such as software architecture, software testing,
software maintenance, and software project management. It requires
expertise in areas such as computer science, mathematics, and
engineering, as well as an understanding of business and user needs.

477

#include<iostream>

using namespace std;

int main() {

float x = 0;

for(int i=1; i<=50; i++) {

x += (float)1/i;

}

cout<<"Value of x: "<< x;

return 0;

}

Question 39

Question:

Write a program to calculate the value of x where x = 1 + 1/2 + 1/3 + … + 1/50.

Solution:

Question 40

Question:

Write a program that reads a number and find all its divisor.

Solution:

Algorithm design is the process of creating a set of instructions, or steps, to solve a
particular problem or accomplish a specific task. Algorithms are essential in computer
science and programming because they provide a way to automate processes and make
them more efficient. The following are some general steps for designing an algorithm:

• Understand the problem: Before designing an algorithm, it is essential to have a
clear understanding of the problem you are trying to solve. Analyze the problem,
break it down into smaller sub-problems, and identify the input and output
requirements.

• Plan the algorithm: Once you have a clear understanding of the problem, plan the
algorithm by determining the steps required to solve the problem. Identify the data
structures and programming constructs that will be required, such as loops,
conditionals, and functions.

• Code the algorithm: Write the code for the algorithm using the programming
language of your choice. Be sure to use clear and concise code that is easy to
understand and debug.

• Test the algorithm: Test the algorithm with different inputs to ensure that it works as
expected. Debug any errors that are identified during testing.

• Optimize the algorithm: Once the algorithm is working correctly, optimize it to
improve its efficiency. This may involve reducing the number of operations required,
using more efficient data structures, or optimizing the code for the specific hardware
and software environment.

• Document the algorithm: Finally, document the algorithm, including its purpose,
inputs, outputs, and any limitations or assumptions made during the design process.
This documentation will help others understand and use the algorithm in the future.

Designing an algorithm can be a complex process, and it often requires a deep
understanding of the problem domain and the programming language being used.
However, with practice and experience, anyone can become proficient in algorithm design
and develop efficient and effective solutions to complex problems.

478

#include<iostream>

using namespace std;

int main() {

int a, b, c, d, e, f;

a = 10;

b=12;

Question 41

Question:

Write a program to find the incremented and decremented values of two numbers.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, i;

cout<<"\nEnter a number: ";

cin>>x;

cout<<"All the divisor of "<<x<<" are: \n";

for(i = 1; i <= x; i++) {

if((x%i) == 0) {

cout<<i<<endl;

}

}

return 0;

}

Automata theory is a branch of computer science that deals
with the study of abstract machines or computational models
that can perform various operations on strings or symbols.
These machines are used to model and describe the behavior
of systems that exhibit complex behavior, such as natural
language processing, computer languages, and artificial
intelligence.

Automata theory includes the study of various types of
machines or models, such as finite automata, pushdown
automata, Turing machines, and more. Each of these models
has different computational power and can perform different
types of operations on strings or symbols.

The theory behind automata is to design computational
models that can process and recognize patterns in strings
or symbols, and make decisions based on the input. The
different models of automata are used to study the different
levels of complexity in computation, and to design
algorithms that can efficiently solve complex problems.

Automata theory has many practical applications, including
in compiler design, natural language processing, artificial
intelligence, and database systems. By understanding the
computational power and limitations of different automata
models, computer scientists can design efficient and
effective algorithms for solving complex problems in
various fields.

c=a+1;

d=b+1;

e=a-1;

f=b-1;

cout<<"The incremented value of a = "<< c << endl;

cout<<"The incremented value of b = "<< d << endl;

cout<<"The decremented value of a = "<< e << endl;

cout<<"The decremented value of b = "<< f << endl;

return 0;

}

Question 42

Question:

Write a program to find square of a entered number using functions.

Solution:

#include<iostream>

using namespace std;

int square();

int main() {

int answer;

answer = square();

cout<<"The square of the entered number is: "<< answer;

return 0;

}

int square() {

479

int x;

cout<<"Enter any number: ";

cin>>x;

return x*x;

}

Question 43

Question:

Write a program that accepts principal amount, rate of interest, time and compute the

simple interest.

Solution:

#include<iostream>

using namespace std;

int main() {

int P,T, R, SI;

cout<<"Enter the principal amount: ";

cin>>P;

cout<<"Enter the time: ";

cin>>T;

cout<<"Enter the rate of interest: ";

cin>>R;

SI = P*T*R/100;

cout<<"The simple interest is: "<<SI;

return 0;

}

480

Question 44

481

#include<iostream>

using namespace std;

int main() {

int a, b;

cout<<"\nEnter the value for a: ";

cin>>a;

cout<<"\nEnter the value for b: ";

cin>>b;

cout<<"\nBefore swapping: " <<a <<" "<<b;

a=a+b;

b=a-b;

a=a-b;

cout<<"\nAfter swapping: " <<a<<" "<<b;

return 0;

}

Question:

Write a program that swaps two numbers without using third variable.

Solution:

Git is a distributed version control system that is

open-source, free, and made to manage projects of

all sizes quickly and effectively. It was created by

Linus Torvalds in 2005 for development of the

Linux kernel, and since then has become one of the

most widely used version control systems in the

software development industry. Git allows multiple

users to work on the same project simultaneously,

while keeping track of changes made to the

codebase and providing features for managing and

merging these changes. Git is used not only for

software development but also for managing

changes to any type of file, such as documentation,

configuration files, and even images.

Question 45

482

#include<iostream>

using namespace std;

int main() {

int x, y, *p, *q;

cout<<"Enter the value for x: ";

cin>> x;

cout<<"Enter the value for y: ";

cin>> y;

p = &x;

q = &y;

if(*p>*q) {

cout<<"x is greater than y";

}

else {

cout<<"y is greater than x";

}

return 0;

}

Question:

Write a program to find the greatest of two entered numbers using pointers.

Solution:

Docker is a popular open-source platform for building,

deploying, and managing applications in containers. A

container is a lightweight and standalone executable package

that includes everything needed to run an application, such as

code, libraries, and dependencies. Docker allows developers to

package their applications and dependencies into a container

image, which can be easily shared and run across different

environments, such as development, testing, and production.

Docker containers provide a consistent environment for

applications, reducing compatibility issues and making it easier

to deploy and scale applications. Docker is widely used in

software development and deployment, particularly in modern

cloud-based and microservices architectures. With Docker,

developers can build, test, and deploy applications quickly and

efficiently, while operations teams can manage and scale these

applications with ease.

#include<iostream>

using namespace std;

int main() {

char i;

char body [4] = {'b', 'o', 'd', 'y'};

for(i=0; i<4; i++)

cout<<"\n body ["<<body[i] <<"] = "<< body[i] << endl;

return 0;

}

Question 46

Question:

***Write a program to print the output:

body [b] = b

body [o] = o

body [d] = d

body [y] = y

Solution:

483

A computer's operating system, sometimes known as
an OS, is a piece of software that controls the hardware
and software resources of the system and offers standard
services to applications running on the system. The
primary function of an operating system is to act as an
intermediary between the computer hardware and the
applications that run on it. It provides a user interface,
manages the computer's memory and processing
resources, and controls input or output devices such as
keyboards, screens, and printers.

The main functions of an operating system include
managing the allocation of resources, scheduling
processes, providing security and protection, managing
file systems, and providing a user interface. Operating
systems are essential for the functioning of modern
computer systems, including desktop computers,
servers, and mobile devices. Windows, macOS, Linux,
and Android are some common operating systems.
Operating systems play a crucial role in the performance
and reliability of computer systems and are a
fundamental component of computer science and
computer engineering.

Computer graphics refers to the creation, manipulation, and display of visual content using computer
software and hardware. It involves the use of mathematical algorithms, digital tools, and techniques to
create images, animations, and visual effects. Computer graphics is used in a wide range of applications,
including digital art, video games, film and television, product design, scientific visualization, and more.

Computer graphics can be divided into two categories: raster graphics and vector graphics. Raster
graphics are composed of pixels and are used for creating images and photographs, while vector graphics
use mathematical formulas to create geometric shapes and are used for creating logos and illustrations.

The field of computer graphics encompasses various subfields, including computer-aided design (CAD),
3D modeling, computer animation, virtual reality, and augmented reality. Computer graphics is a rapidly
evolving field that is constantly advancing due to advancements in computer technology and software
development. It plays a crucial role in many industries and is an essential part of modern design and
communication.

#include<iostream>

using namespace std;

int main() {

double PV;

cout<<"Enter purchased value: ";

cin>>PV;

if(PV>1000) {

cout<<"Discount = "<< PV * 0.1 << endl;

cout<<"Total= "<< PV - PV * 0.1 << endl;

}

else if(PV>5000) {

cout<<"Discount = "<< PV * 0.2 << endl;

cout<<"Total= "<< PV - PV * 0.2 << endl;

}

else {

cout<<"Discount = "<< PV * 0.3 << endl;

cout<<"Total= "<< PV - PV * 0.3 << endl;

}

Question 47

Question:

Write a program to calculate the discounted price and the total price after discount

Given:

If purchase value is greater than 1000, 10% discount

If purchase value is greater than 5000, 20% discount

If purchase value is greater than 10000, 30% discount.

Solution:

484

Bootstrap is a free and open-source front-end web development

framework that is widely used to create responsive and mobile-

first websites and web applications. It was developed by Twitter

and is now maintained by the Bootstrap Core Team.

Bootstrap provides a set of CSS and JavaScript components that

can be easily incorporated into web projects. These components

include navigation bars, forms, buttons, icons, and more. The

framework also offers a grid system that allows developers to

create flexible and responsive layouts for their web pages.

One of the key benefits of Bootstrap is its focus on mobile-first

design. The framework includes CSS classes that are specifically

designed for smaller screens, making it easy to create websites

that work well on both desktop and mobile devices.

Bootstrap is highly customizable and can be easily modified to

match the look and feel of a specific website or brand. It also

offers a range of third-party themes and plugins that can be used

to extend the functionality of the framework.

Overall, Bootstrap is a popular and powerful front-end web

development framework that provides a range of CSS and

JavaScript components for creating responsive and mobile-first

websites and web applications. Its focus on mobile-first design,

flexible grid system, and customization options make it a popular

choice among web developers.

return 0;

}

Question 48

Question:

Write a program to print the first ten natural numbers using while loop statement.

Solution:

#include<iostream>

using namespace std;

int main() {

int i = 1;

while(i<=10) {

cout<<"\n" << i++;

}

return 0;

}

Question 49

Question:

Write a program to shift inputted data by two bits to the left.

#include<iostream>

#include<cstring>

using namespace std;

void myfunc(string x) {

cout << x << " Einstein\n";

}

int main() {

myfunc("David");

myfunc("Elsa");

myfunc("John");

return 0;

}

?

485

Solution:

#include<iostream>

using namespace std;

int main() {

int x;

cout<<"Enter the integer from keyboard: ";

cin>>x;

cout<<"\nEntered value: "<< x;

cout<<"\nThe left shifted data is: " << (x<<=2);

return 0;

}

Question 50

Question:

Write a program to shift inputted data by two bits to the Right.

Solution:

#include<iostream>

using namespace std;

int main() {

int x;

cout<<"Enter the integer from keyboard: ";

cin>>x;

486

cout<<"\nEntered value: "<< x;

cout<<"\nThe right shifted data is: " << (x>>=2);

return 0;

}

Question 51

Question:

Write a program to calculate the exact difference between x and 21. Return three times

the absolute difference if x is greater than 21.

Solution:

#include<iostream>

using namespace std;

int main() {

int x;

cout<<"Enter the value for x: ";

cin>>x;

if(x<=21){

 cout<<abs(x-21);

 }

else if(x>=21) {

 cout<<abs(x-21)*3;

}

return 0;

}

#include<iostream>

using namespace std;

void myfunc() {

cout << "Einstein"<<endl;

}

int main() {

myfunc();

myfunc();

myfunc();

return 0;

}

Output:

Einstein

Einstein

Einstein

487

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"\nEnter the first number: ";

cin>>x;

cout<<"\nEnter the second number: ";

cin>>y;

if(x % y == 0) {

cout<<x<<" is a multiple of " <<y;

}

else {

cout<<x<<" is not a multiple of " <<y;

}

return 0;

}

Question 52

Question:

Write a program that reads in two numbers and determine whether the first number is a

multiple of the second number.

Solution:

488

Computational complexity theory is a branch of computer science
and mathematics that focuses on classifying computational problems
according to their level of difficulty, and studying the resources
required to solve them. It aims to understand the limitations and
capabilities of algorithms and computing systems in solving problems
efficiently.

One of the main concepts in computational complexity theory is the
notion of a computational problem. A computational problem is a task
that can be performed by a computer, such as sorting a list of numbers
or finding the shortest path between two points. Problems are typically
defined by a set of inputs and a desired output.

The difficulty of a computational problem is measured in terms of
its computational complexity. This includes the amount of time
required to solve the problem, the amount of memory needed, and the
number of computational steps required. Computational complexity is
often divided into different classes, such as polynomial time,
exponential time, or non-deterministic polynomial time.

One of the most famous problems in computational complexity theory
is the P vs. NP problem. This problem asks whether every problem
that can be verified by a polynomial-time algorithm can also be solved
by a polynomial-time algorithm. The answer to this problem is not yet
known, and it is considered one of the most important open problems
in computer science.

Another important concept in computational complexity theory is
the notion of hardness. A problem is said to be hard if it is at least as
difficult as the hardest problems in a particular complexity class. This
includes problems that are difficult to approximate or require non-
deterministic algorithms to solve.

Overall, computational complexity theory is a vital area of computer
science that seeks to understand the limits and possibilities of
computation. It has important applications in areas such as
cryptography, optimization, and algorithm design.

Question 53

Question:

Write a program to print the output:

Name of the book = B

Price of the book = 135.00

Number of pages = 300

Edition of the book = 8

using structures.

Solution:

#include<iostream>

using namespace std;

int main() {

struct book {

char name;

float price;

int pages;

int edition;

};

struct book b1= {'B', 135.00, 300, 8};

cout<<"Name of the book = "<< b1.name<< endl;

cout<<"Price of the book = "<< b1.price<<endl;

cout<<"Number of pages = "<< b1.pages<<endl;

cout<<"Edition of the book = "<< b1.edition<< endl;

return 0;

}

#include<iostream>

using namespace std;

int myfunc(int x) {

 return 15 + x;

}

int main() {

cout << myfunc(13);

return 0;

}

?

489

Question 54

Question:

Write a program to convert Celsius into Fahrenheit.

Solution:

#include<iostream>

using namespace std;

int main() {

float fahrenheit, celsius;

celsius = 36;

fahrenheit = ((celsius*9)/5)+32;

cout<<"\nTemperature in fahrenheit is: "<<fahrenheit;

return 0;

}

Question 55

Question:

Write a program that will examine two inputted integers and return true if either of them

is 50 or if their sum is 50.

490

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

if(x == 50 || y == 50 || (x + y == 50)) {

 cout<<"\nTrue";

}

else {

 cout<<"\nFalse";

}

return 0;

}

Question 56

Question:

Write a program that counts the even, odd, positive, and negative values among eighteen

integer inputs.

Solution:

#include<iostream>

491

492

using namespace std;

int main () {

int x, even = 0, odd = 0, positive = 0, negative = 0;

cout<<"\nPlease enter 18 numbers: \n";

for(int i = 0; i < 18; i++) {

cin>>x;

if (x > 0) {

positive++;

}

if(x < 0) {

negative++;

}

if(x % 2 == 0) {

even++;

}

if(x % 2 != 0) {

odd++;

}

}

cout<<"\nNumber of even values: "<<even;

cout<<"\nNumber of odd values: "<<odd;

cout<<"\nNumber of positive values: "<<positive;

cout<<"\nNumber of negative values: "<<negative;

return 0;

}

SQL (Structured Query Language) is a programming language designed to manage and

manipulate data stored in relational databases. It provides a standardized way to interact with

databases, allowing users to create, modify, and retrieve data stored in them. SQL is used to

create and manage tables, define relationships between them, insert, update and delete data,

and perform queries to retrieve specific information from one or more tables. SQL is widely

used in various industries, including finance, healthcare, e-commerce, and government. It is a

powerful and flexible language that is relatively easy to learn and can be used with various

database management systems (DBMS) such as MySQL, Oracle, and Microsoft SQL Server.

493

#include<iostream>

using namespace std;

int main() {

int age;

cout<<"Enter age: ";

cin>>age;

if(age>=60) {

cout<<"Senior citizen";

}

else {

cout<<"Not a senior citizen";

}

return 0;

}

Question 57

Question:

Write a program to check whether the person is a senior citizen or not.

Solution:

Question 58

Question:

Write a program that reads a student's three subject scores (0-100) and computes the

average of those scores.

Visual Studio Code, commonly known as VS Code, is

a free source-code editor developed by Microsoft. It is

compatible with Linux, macOS, and Windows. VS

Code is designed to provide developers with a

lightweight and customizable tool for coding,

debugging, and version control. It supports a wide

range of programming languages and has a vast

collection of extensions that can be installed to enhance

its functionality. VS Code includes features such as

syntax highlighting, code completion, debugging,

source control integration, and task automation. It also

offers an integrated terminal, allowing developers to

run commands and scripts directly within the editor.

VS Code has gained popularity among developers due

to its versatility, speed, and ease of use, making it a

popular choice for coding projects of all sizes and

types.

494

#include<iostream>

using namespace std;

int main() {

float score, total_score = 0;

int subject = 0;

cout<<"Enter three subject scores (0-100):\n";

while (subject != 3) {

cin>>score;

if(score < 0 || score > 100) {

cout<<"Please enter a valid score.\n";

}

else {

total_score += score;

subject++;

}

}

cout<<"Average score = "<< (total_score/3);

return 0;

}

Solution:

Question 59

Question:

What results would the following programs produce?

Google Cloud Platform, also known as GCP, is a
cloud computing platform and service provided by
Google. It provides a wide range of services and
solutions, including infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service
(SaaS). GCP enables developers to build, deploy, and
manage applications and services on Google's global
network of data centers.

GCP provides a wide range of services and solutions,
including virtual machines, container services,
serverless computing, data storage, database services,
analytics, and artificial intelligence. It also offers a
variety of developer tools and services, including
Google Cloud SDK, Google Cloud Build, and Google
Cloud Functions.

GCP is designed to be flexible and scalable, making it
suitable for businesses of all sizes. It provides various
pricing options, including pay-as-you-go, subscription-
based, and free plans, allowing businesses to choose the
best pricing plan that meets their needs and budget.

GCP also offers a wide range of security features and
compliance certifications, ensuring that businesses can
securely and compliantly run their applications and
services on the platform.

Overall, GCP is a powerful and flexible cloud
computing platform that provides a wide range of
services and solutions for building, deploying, and
managing applications and services. It is widely used by
businesses of all sizes and industries, from startups to
large enterprises, and is considered one of the leading
cloud computing platforms in the market.

495

1

2

#include<iostream>

using namespace std;

int main() {

for(int i=1;i<=5;i++) {

if(i==3) {

goto HAI;

}

cout<<"\n "<<i;

}

HAI : cout<<"\n Linux";

}

Solution:

#include<iostream>

using namespace std;

int main() {

for(int i=1; i<=5; i++) {

if(i==3) {

break;

}

cout<<"\n"<< i;

}

return 0;

}

JIRA is a software development tool developed by Atlassian.

It is a project management tool that is designed to help teams

plan, track, and manage their software development projects.

JIRA is primarily used for agile software development,

including Scrum, Kanban, and other agile methodologies. It

provides teams with a centralized platform to track issues,

bugs, and project progress, enabling better collaboration and

communication between team members.

JIRA offers various features such as customizable workflows,

agile boards, customizable dashboards, and reporting. It also

integrates with other Atlassian tools, such as Confluence,

Bitbucket, and Bamboo, to provide end-to-end software

development solutions. JIRA can be used by software

development teams of all sizes and is popular among both

small and large organizations. It is highly configurable and

can be customized to meet the specific needs of a

development team. Overall, JIRA is a powerful and flexible

tool that can help software development teams manage their

projects efficiently and effectively.

#include<iostream>

496

1

2

Linux

#include<iostream>

using namespace std;

int main() {

for(; ;) {

cout<<"This loop will run forever.\n";

}

return 0;

}

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

Solution:

Solution:

Azure, also known as Microsoft Azure, is a cloud

computing platform and service provided by Microsoft. It

provides a wide range of services and solutions, including

infrastructure as a service (IaaS), platform as a service

(PaaS), and software as a service (SaaS). Azure enables

developers to build, deploy, and manage applications and

services on Microsoft's global network of data centers.

Azure provides a wide range of services and solutions,

including virtual machines, container services, serverless

computing, data storage, database services, analytics, and

artificial intelligence. It also offers a variety of developer

tools and services, including Azure DevOps, Visual

Studio, and GitHub integration.

Azure is designed to be flexible and scalable, making it

suitable for businesses of all sizes. It provides various

pricing options, including pay-as-you-go, subscription-

based, and free plans, allowing businesses to choose the

best pricing plan that meets their needs and budget.

Overall, Azure is a powerful and flexible cloud computing

platform that provides a wide range of services and

solutions for building, deploying, and managing

applications and services. It is widely used by businesses

of all sizes and industries, from startups to large

enterprises, and is considered one of the leading cloud

computing platforms in the market.

#include<iostream>

497

Hello,world!

#include<iostream>

using namespace std;

int main () {

cout<<"linux\n";

exit (0);

cout<<"php\n";

return 0;

}

linux

Solution:

Solution:

using namespace std;

int main() {

cout<<"Hello,world!";

return 0;

cout<<"Hello,world!";

}

Apache Maven is a build automation tool and a powerful

project management tool developed by the Apache

Software Foundation. It is widely used for Java projects,

but can also be used for other programming languages like

C#, Ruby, and Scala. Maven simplifies the process of

building, testing, and deploying Java-based applications by

providing a standardized way to manage project

dependencies, versioning, and packaging.

Maven uses an XML-based project object model (POM) to

define a project, its dependencies, and its build

configuration. This makes it easier to manage complex

projects and ensures that all developers are using the same

build processes and configurations. Maven manages

dependencies by automatically downloading and

integrating them into the project build, reducing the need

for manual management.

Maven can be used to automate the building, testing, and

deployment of Java applications, as well as generating

documentation, creating reports, and generating code from

templates. It can also be used to manage multiple projects,

making it a popular choice for larger development teams

working on multiple projects simultaneously. Overall,

Maven is a versatile and powerful tool that can help

developers manage the complexities of Java projects and

streamline the software development process.

498

1

2

4

5

#include<iostream>

using namespace std;

int main() {

int a = 10, b = 20, c;

c = (a < b) ? a : b;

cout<<c;

return 0;

}

Solution:

using namespace std;

int main() {

for(int i=1; i<=5; i++) {

if(i==3) {

continue;

}

cout<<"\n "<<i;

}

return 0;

}

Jenkins is an open-source automation server that is used to

automate the building, testing, and deployment of software. It is

a popular tool used for continuous integration and continuous

delivery (CI/CD) pipelines. Jenkins is written in Java and can

be installed on various operating systems, including Windows,

macOS, and Linux.

Jenkins provides a web-based interface that enables developers

to create and manage workflows, including automated builds,

tests, and deployments. It integrates with various development

tools and services, including source code management systems

like Git and Subversion, build tools like Maven and Gradle, and

testing frameworks like JUnit and Selenium. Jenkins can also

be used to orchestrate complex workflows, such as multi-stage

deployment pipelines that include testing and approvals.

One of the key benefits of Jenkins is its flexibility and

extensibility. It offers a large collection of plugins that can be

used to extend its functionality, and developers can also create

their own plugins to meet their specific needs. Jenkins is

widely used in software development teams of all sizes, from

small startups to large enterprises, and is considered a critical

tool for implementing agile and DevOps practices. Overall,

Jenkins is a powerful and flexible automation server that helps

teams automate their software development processes and

deliver high-quality software faster.

499

10

#include<iostream>

using namespace std;

#define A 15

int main() {

int x;

x=A;

cout<<x;

return 0;

}

15

#include<iostream>

#include<cmath>

using namespace std;

int main() {

int x = 20;

cout<<"Inverse of tan x = "<< atan(x);

Solution:

Solution:

Kubernetes, commonly referred to as K8s, is an open-source container

orchestration platform developed by Google. It automates the deployment,

scaling, and management of containerized applications. Kubernetes provides

a platform-agnostic way to manage containerized applications and services,

enabling developers to deploy and manage their applications across multiple

cloud providers and on-premise data centers.

Kubernetes enables developers to deploy containerized applications and

services by defining a set of desired states in a Kubernetes manifest file.

Kubernetes then automatically schedules and manages the containers,

ensuring that the desired state is maintained. It provides features such as

automatic scaling, rolling updates, self-healing, and load balancing, making it

easier to manage and scale containerized applications.

Kubernetes is designed to be highly available, scalable, and fault-tolerant. It

can run on a cluster of machines, making it possible to manage large-scale

applications with ease. Kubernetes also provides an API that enables

developers to automate the management of their containerized applications,

making it a popular choice for DevOps teams.

Overall, Kubernetes is a powerful and flexible platform for managing

containerized applications and services. It simplifies the management of

containerized applications, making it easier for developers to focus on

developing their applications rather than managing infrastructure.

500

Inverse of tan x = 1.52084

#include<iostream>

#include<cmath>

using namespace std;

int main() {

double a, b;

a = -2.5;

b = fabs(a);

cout<<"|"<<a<<"|" << " = "<<b;

return 0;

}

|-2.5| = 2.5

Solution:

Solution:

return 0;

}

Functional programming is a programming paradigm that
is focused on writing programs using pure functions, which
are functions that do not modify any data outside of their
scope, and have no side effects. Functional programming is
based on the principles of mathematical functions, and
emphasizes the use of expressions and immutability.

In functional programming, the emphasis is on writing
code that is declarative rather than imperative. This means
that instead of telling the computer how to perform a task,
you specify what you want to accomplish, and the language
takes care of how to achieve it. This approach helps to
reduce complexity and increase readability, as the code is
more concise and easier to understand.

Functional programming languages are often used in
applications that require high levels of concurrency or
parallelism, as they are well-suited to working with
immutable data and avoiding mutable state. Some popular
functional programming languages include Haskell, Lisp,
Erlang, and Clojure. Many modern programming languages,
such as JavaScript, Python, and Ruby, also support
functional programming paradigms to some extent.

501

#include<iostream>

using namespace std;

int main() {

int x=12, y =3;

cout<<abs(-x-y);

return 0;

}

15

#include<iostream>

using namespace std;

int main() {

int x=12, y =3;

cout<<-(-x-y);

return 0;

}

15

Solution:

Solution:

Logic programming is a programming paradigm that is based on the use
of mathematical logic for problem-solving. In logic programming,
programs are written in terms of a set of rules and facts, and the execution
of the program involves deriving logical conclusions from these rules and
facts.

The most well-known logic programming language is Prolog, which
stands for "Programming in Logic". In Prolog, the program consists of a
set of rules and facts that define relationships between objects. The
program is executed by making queries to the database of rules and facts,
and the system uses logical inference to derive answers to the queries.

One of the main advantages of logic programming is its ability to handle
complex symbolic data structures and relationships. Logic programming
languages are often used in areas such as natural language processing,
expert systems, and artificial intelligence.

However, logic programming can be challenging for programmers who
are used to imperative or object-oriented programming paradigms, as it
requires a different way of thinking about problem-solving. Additionally,
the efficiency of logic programming can be a concern in some cases, as the
inference process can be computationally expensive.

502

#include <iostream>

using namespace std;

int main() {

int x=12, y =3;

cout<< x-(-y);

return 0;

}

15

#include<iostream>

using namespace std;

Solution:

Question 60

Question:

Write a program to find the size of an array.

Solution:

A programming paradigm called "object-oriented programming"
(OOP) is founded on the idea that "objects" can hold both data and
the code needed to manipulate that data. In OOP, programs are
designed by creating classes, which are templates or blueprints for
creating objects. Each object created from a class has its own unique
data and behavior, but shares the same structure and behavior
defined in the class.

The key concepts of OOP are inheritance, encapsulation, and
polymorphism. Inheritance allows a class to inherit properties and
behaviors from a parent class, which can be useful for reusing code
and creating hierarchies of related objects. Encapsulation involves
hiding the details of an object's implementation from the outside
world, which can make it easier to modify and maintain code.
Polymorphism allows different objects to respond to the same
message or method in different ways, which can make code more
flexible and extensible.

OOP languages include Java, C++, Python, Ruby, and many others.
OOP is widely used in many areas of software development,
including desktop applications, web development, game
development, and mobile app development. OOP has many
advantages, including improved code organization, modularity, and
code reusability. However, it can also be more complex than other
programming paradigms, and can be challenging for beginners to
learn.

503

#include<iostream>

using namespace std;

int main () {

int x, i;

cout<<"\nEnter a integer: \n";

cin>>x;

if(x>0) {

cout<<"Sequence from 1 to "<< x << ":\n";

for(i=1; i<x; i++) {

cout<<i<<"+";

}

cout<<i<<"\n";

}

Question 61

Question:

Write a program that prints a sequence from 1 to a given integer, inserts a plus sign

between these numbers, and then removes the plus sign at the end of the sequence.

Solution:

int main() {

int num [] = {11, 22, 33, 44, 55, 66};

int n = sizeof(num) / sizeof(num [0]);

cout<<"Size of the array is: " << n;

return 0;

}

return 0;

}

Question 62

Question:

Write a program to verify whether a triangle's three sides form a right angled triangle or

not.

Solution:

#include<iostream>

using namespace std;

int main() {

int a,b,c;

cout<<"Enter the three sides of a triangle: \n";

cin>>a;

cin>>b;

cin>>c;

if((a*a)+(b*b)==(c*c) || (a*a)+(c*c)==(b*b) || (b*b)+(c*c)==(a*a)) {

cout<<"Triangle's three sides form a right angled triangle.\n";

}

else {

cout<<"Triangle's three sides does not form a right angled triangle.\n";

}

return 0;

}

504

Question 63

Question:

Write a program that will find the second-largest number among the user's input of three

numbers.

Solution:

#include<iostream>

using namespace std;

int main() {

int a, b, c;

cout<<"\nEnter the first number: ";

cin>>a;

cout<<"\nEnter the second number: ";

cin>>b;

cout<<"\nEnter the third number: ";

cin>>c;

if(a>b && a>c) {

 if(b>c)

 cout<<b<<" is second largest number among three numbers";

 else

 cout<<c<<" is second largest number among three numbers";

}

else if(b>c && b>a) {

 if(c>a)

 cout<<c<<" is second largest number among three numbers";

 else

505

 cout<<a<<" is second largest number among three numbers";

}

else if(a>b)

 cout<<a<<" is second largest number among three numbers";

 else

 cout<<b<<" is second largest number among three numbers";

 return 0;

}

Question 64

Question:

Write a program to calculate the sum of the two given integer values. Return three times

the sum of the two values if they are equal.

Solution:

#include<iostream>

using namespace std;

int myfunc();

int myfunc(int a, int b) {

return a == b ? (a + b)*3 : a + b;

}

int main() {

cout<<""<<myfunc(3, 5);

cout<<"\n"<<myfunc(6, 6);

return 0;

}

506

507

#include<iostream>

using namespace std;

int main() {

int mins, hrs;

cout<<"Input minutes: ";

cin>>mins;

hrs=mins/60;

mins=mins%60;

cout<<hrs<<" Hours,"<<mins<< " Minutes.\n";

return 0;

}

Question 65

Question:

Write a program that accepts minutes as input, and display the total number of hours and

minutes.

Solution:

AWS stands for Amazon Web Services, which is a cloud computing platform offered by

Amazon. AWS provides a wide range of cloud-based services, including computing power,

storage, and databases, as well as machine learning, security, and analytics tools. These

services are available on-demand, allowing businesses and individuals to quickly and easily

access the resources they need without having to invest in and maintain their own physical

infrastructure. AWS is one of the leading cloud computing platforms in the world, used by

millions of customers in over 190 countries.

Question

508

508

#include<iostream>

using namespace std;

int main() {

int x;

cout<<"\nEnter a number: ";

cin>>x;

if(x % 3 == 0 || x % 5 == 0) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

Question:

Write a program to determine whether a positive number entered by the user is a multiple

of three or five.

Solution:

Selenium is an open-source testing platform for web browser

automation. It provides a set of tools and libraries for automating

web browsers, enabling developers and testers to automate web

application testing. Selenium can be used with various programming

languages such as Java, Python, Ruby, and C#.

Selenium can automate various web application testing tasks,

including functional testing, regression testing, and user acceptance

testing. It can interact with web elements, simulate user actions, and

capture results, making it easier to automate web application testing.

Selenium also provides a set of tools for testing web applications

across multiple browsers and platforms. It supports various web

browsers, including Google Chrome, Mozilla Firefox, and Microsoft

Edge, and can be used to test web applications on different operating

systems, including Windows, macOS, and Linux.

Selenium is widely used in software development teams of all sizes

and is considered a critical tool for implementing agile and DevOps

practices. It enables developers to automate web application testing,

making it easier to ensure that web applications are tested thoroughly

and released with high quality. Overall, Selenium is a powerful and

flexible testing framework that helps developers and testers automate

web application testing and ensure the quality of their web

applications.

Question

509

509

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

if((x >= 100 && x <= 200) || (y >= 100 && y <= 200)) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

Question:

Write a program to verify whether one of the two entered integers falls within the range

of 100 to 200 included.

Solution:

Ansible is an open-source IT automation tool that simplifies the management and orchestration

of complex IT infrastructure. It allows users to automate repetitive tasks, manage configuration

files, and deploy applications across multiple servers and environments. Ansible is designed to

be simple and easy to use, with a YAML-based scripting language that is human-readable and

easily understood by both developers and non-developers. It uses a push-based model, meaning

that configuration changes are pushed out to the target hosts in a controlled and predictable

manner.

Ansible uses SSH (Secure Shell) protocol to connect to remote hosts, making it easy to manage

and automate servers across a network. It also supports a wide range of modules, which are pre-

built pieces of code that perform specific tasks such as installing software packages, configuring

services, and creating users. Ansible can be used for a wide range of IT automation tasks,

including configuration management, application deployment, and orchestration of infrastructure

components such as cloud services, storage systems, and networking devices. Overall, Ansible is

a powerful and flexible IT automation tool that simplifies the management and orchestration of

complex IT infrastructure, allowing organizations to streamline their operations and reduce the

time and effort required to manage their IT resources.

Question

510

510

#include<iostream>

using namespace std;

int myfunc();

int myfunc(int a, int b) {

int x = abs(a - 100);

int y = abs(b - 100);

return x == y ? 0 : (x < y ? a : b);

}

int main() {

cout<<" "<< myfunc(86, 99);

cout<<"\n "<<myfunc(55, 55);

cout<<"\n "<<myfunc(65, 80);

return 0;

}

Question:

Write a program to determine which of the two given integers is closest to the value 100.

If the two numbers are equal, return 0.

Solution:

Terraform is an open-source infrastructure as code (IaC) tool

that is used for building, changing, and versioning

infrastructure in a safe, efficient, and repeatable way. It

allows developers and infrastructure teams to define

infrastructure as code, which can be versioned and managed

just like any other software code. Terraform works by

defining the desired state of the infrastructure in a declarative

language called HashiCorp Configuration Language

(HCL). The desired state is then applied to the infrastructure

by running Terraform, which compares the desired state to

the current state and makes any necessary changes to bring

the infrastructure into compliance with the desired state.

Terraform supports a wide range of cloud providers and

services, including Amazon Web Services, Microsoft Azure,

Google Cloud Platform, and many others. It also supports on-

premises infrastructure, allowing teams to manage

infrastructure across multiple cloud and on-premises

environments. Terraform provides a range of benefits for

infrastructure teams, including increased automation,

improved collaboration, and reduced risk of human error. It

also provides greater transparency and auditability, allowing

teams to easily track changes to infrastructure and roll back

changes if necessary. Overall, Terraform is a powerful

infrastructure as code tool that allows teams to define and

manage infrastructure in a safe, efficient, and repeatable way.

It is widely used in software development teams of all sizes

and is considered a critical tool for implementing modern

infrastructure practices such as DevOps and infrastructure

automation.

Question

511

511

#include<iostream>

using namespace std;

int main() {

int x;

cout<<"\nEnter a number: ";

cin>>x;

if(x % 3 == 0 ^ x % 5 == 0) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

Question:

Write a program to determine whether a positive number entered by the user is a multiple

of three or five, but not both.

Solution:

Nagios is an open-source monitoring system that is used for monitoring the

health and performance of IT infrastructure. It provides a range of tools and

features for monitoring servers, network devices, applications, and services,

and can be used to detect and diagnose problems before they affect end-

users.

Nagios works by monitoring various metrics and alerts, such as CPU usage,

memory usage, disk space, network traffic, and application availability. It

uses a web interface to display the status of monitored objects and provides

alerts and notifications when there are issues or failures.

Nagios is highly customizable and extensible, allowing users to create

custom plugins and add-ons to monitor a wide range of systems and

services. It also supports various third-party plugins and integrations,

making it a versatile and flexible monitoring system.

Nagios is widely used in IT operations teams of all sizes and is considered a

critical tool for monitoring and maintaining IT infrastructure. It provides a

range of benefits, including increased visibility and control, improved

uptime and reliability, and reduced mean time to repair (MTTR) in the event

of failures or incidents.

Overall, Nagios is a powerful and flexible monitoring system that provides

IT teams with the tools and features they need to monitor and maintain IT

infrastructure effectively. It is a critical tool for ensuring the performance,

availability, and reliability of IT infrastructure and services.

Question

512

512

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

if(abs(x % 10) == abs(y % 10)) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

Question:

Write a program to determine whether two entered non-negative numbers have the same

last digit.

Solution:

Gradle is an open-source build automation tool that is used for

building, testing, and deploying software projects. It provides a

flexible and powerful build system that can be used to automate

various tasks in the software development process.

Gradle uses a build script that is written in a Groovy or Kotlin-based

domain-specific language (DSL). The build script describes the

dependencies and tasks required to build the software project, and

Gradle uses this information to generate the build output.

Gradle supports a wide range of programming languages and

platforms, including Java, Kotlin, Groovy, Android, and C++. It

provides a rich set of features for building and testing software

projects, including incremental builds, parallel builds, and dependency

management.

Gradle also supports various third-party plugins and integrations,

making it a versatile and flexible build tool. It can be used with

various IDEs, such as Eclipse and IntelliJ IDEA, and can be integrated

with various continuous integration and deployment (CI/CD) tools,

such as Jenkins and Travis CI.

Gradle is widely used in software development teams of all sizes and

is considered a critical tool for implementing modern software

development practices such as DevOps and continuous delivery. It

provides a range of benefits, including improved automation,

increased efficiency, and reduced build times.

Overall, Gradle is a powerful and flexible build automation tool that

provides developers and development teams with the tools and

features they need to build, test, and deploy software projects

effectively.

Question 71

Question:

Write a program to determine whether a given non-negative number is a multiple of 12 or

it is one more than a multiple of 12.

Solution:

Question 72

Question:

Write a program that accepts two integers and returns true when one of them equals 6, or

when their sum or difference equals 6.

513

#include<iostream>

using namespace std;

int main() {

int x = 43;

if(x % 12 == 0 || x % 12 == 1) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

API (Application Programming Interface) testing is a type of software

testing that focuses on verifying the functionality, reliability, security, and

performance of an API. An API is a set of protocols and standards used to

build and integrate software applications. It provides a way for two

different software systems to communicate with each other. API testing

involves sending requests to an API and receiving responses, then

validating that the responses are correct and meet the expected

requirements. Some common types of API tests include:

 Functional testing: verifying that the API performs the intended

functions and behaves as expected.

 Performance testing: evaluating the response time, throughput, and

resource utilization of the API.

 Security testing: identifying vulnerabilities and weaknesses in the

API that could lead to unauthorized access or data breaches.

 Compatibility testing: ensuring that the API works with various

operating systems, browsers, and devices.

API testing can be done manually or using automated testing tools.

Automated testing tools can save time and increase efficiency by

automating repetitive tasks and providing quick feedback on the

performance and functionality of the API. To sum up, API testing is a

crucial step in the software development lifecycle to ensure that the API is

working as intended and meets the desired quality standards.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

if(x == 6 || y == 6 || x + y == 6 || abs(x - y) == 6) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

Question 73

Question:

Write a program to check whether it is possible to add two integers to get the third

integer from three entered integers.

Solution:

514

#include<iostream>

using namespace std;

int main() {

int x, y, z;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

cout<<"\nEnter the value for z: ";

cin>>z;

if(x == y + z || y == x + z || z == x + y) {

cout<<"True";

}

else {

cout<<"False";

}

return 0;

}

Question 74

Question:

Write a program that converts kilometers per hour to miles per hour.

Solution:

#include<iostream>

515

using namespace std;

int main() {

float kmph;

cout<<"Enter kilometers per hour: ";

cin>>kmph;

cout<<(kmph * 0.6213712)<<" miles per hour";

return 0;

}

Question 75

Question:

Write a program to calculate area of an ellipse.

Solution:

#include<iostream>

using namespace std;

#define PI 3.141592

int main() {

float major, minor;

cout<<"\nEnter length of major axis: ";

cin>>major;

cout<<"\nEnter length of minor axis: ";

cin>>minor;

cout<<"\nArea of an ellipse = "<< (PI * major * minor);

return 0;

}

516

Question 76

Question:

Write a program to calculate the sum of three given integers. Return the third value if the

first two values are equal.

Solution:

#include<iostream>

using namespace std;

int myfunc();

int myfunc(int a, int b, int c) {

if (a == b && b == c) return 0;

if (a == b) return c;

if (a == c) return b;

if (b == c) return a;

else return a + b + c;

}

int main() {

cout<<"\n"<<myfunc(11, 11, 11);

cout<<"\n"<<myfunc(11, 11, 16);

cout<<"\n"<<myfunc(18, 15, 10);

return 0;

}

#include<iostream>

#include<cstring>

using namespace std;

void myfunc(string x= "John") {

 cout << x;

}

int main() {

myfunc();

return 0;

}

?

517

Question 77

Question:

Write a program to convert bytes to kilobytes.

Solution:

#include<iostream>

using namespace std;

int main() {

int bytes;

cout<<"\nEnter number of bytes: ";

cin>>bytes;

cout<<"\nKilobytes: "<<(bytes/1024);

return 0;

}

Question 78

Question:

Write a program to convert megabytes to kilobytes.

Solution:

518

#include<iostream>

using namespace std;

int main() {

double megabytes, kilobytes;

cout<<"\nInput the amount of megabytes to convert: ";

cin>>megabytes;

kilobytes = megabytes * 1024;

cout<<"\nThere are "<<kilobytes<< " kilobytes in " <<megabytes<< "

megabytes.";

return 0;

}

Question 79

Question:

Write a program to count the number of even elements in an integer array.

Solution:

#include<iostream>

using namespace std;

int main() {

int array[1000], i, arr_size, even=0;

cout<<"Input the size of the array: ";

cin>>arr_size;

cout<<"Enter the elements in array: \n";

for(i=0; i<arr_size; i++) {

cin>>array[i];

519

}

for(i=0; i<arr_size; i++) {

if(array[i]%2==0) {

 even++;

}

}

cout<<"Number of even elements: "<< even;

return 0;

}

Question 80

Question:

Write a program to count the number of odd elements in an integer array.

Solution:

#include<iostream>

using namespace std;

int main() {

int array[1000], i, arr_size, odd=0;

cout<<"Input the size of the array: ";

cin>>arr_size;

cout<<"Enter the elements in array: \n";

for(i=0; i<arr_size; i++) {

cin>>array[i];

520

}

for(i=0; i<arr_size; i++) {

if(array[i]%2!=0) {

 odd++;

}

}

cout<<"Number of odd elements: "<< odd;

return 0;

}

Question 81

Question:

Write a program that will accept two integers and determine whether or not they are

equal.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"Input the values for x and y: \n";

cin>>x;

cin>>y;

if(x == y) {

 cout<<"x and y are equal\n";

521

}

else {

 cout<<"x and y are not equal\n";

}

return 0;

}

Question 82

Question:

Write a program to find the third angle of a triangle if two angles are given.

Solution:

#include<iostream>

using namespace std;

int main() {

int angle1, angle2;

cout<<"\nEnter the first angle of the triangle: ";

cin>>angle1;

cout<<"\nEnter the second angle of the triangle: ";

cin>>angle2;

cout<<"\nThird angle of the triangle is: "<< (180 - (angle1 + angle2));

return 0;

}

522

Question 83

Question:

Write a program to determine whether a particular year is a leap year or not.

Solution:

#include<iostream>

using namespace std;

int main() {

int year;

cout<<"Enter the year: ";

cin>>year;

if((year % 400) == 0) {

cout<<year<<" is a leap year.";

}

else if((year % 100) == 0) {

cout<<year<<" is a not leap year.";

}

else if((year % 4) == 0) {

cout<<year<<" is a leap year.";

}

else {

cout<<year<<" is not a leap year.";

}

return 0;

}

523

Question 84

Question:

Write a program that reads the candidate's age and determine a candidate's eligibility to

cast his own vote.

Solution:

#include <iostream>

using namespace std;

int main() {

int age;

cout<<"\nEnter the age of the candidate: ";

cin>>age;

if(age<18) {

cout<<"\nWe apologize, but the candidate is not able to cast his vote.";

cout<<"\nAfter "<< (18-age) <<" year, the candidate would be able to cast his

vote.";

}

else {

cout<<"Congratulation! the candidate is qualified to cast his vote.\n";

}

return 0;

}

524

Question 85

Question:

Write a program to Convert Yard to Foot.

Solution:

#include<iostream>

using namespace std;

int main() {

float yard;

cout<<"\nEnter the Length in Yard: ";

cin>>yard;

cout<<yard<<" Yard in Foot is: "<<(3*yard);

return 0;

}

Question 86

Question:

Write a program to convert gigabytes to megabytes.

Solution:

525

#include<iostream>

using namespace std;

int main() {

double gigabytes, megabytes;

cout<<"\nInput the amount of gigabytes to convert: ";

cin>>gigabytes;

megabytes = gigabytes*1024;

cout<<"\nThere are "<<megabytes<<" megabytes in "<<gigabytes<<" gigabytes.";

return 0;

}

Question 87

Question:

Write a program to Convert Kilogram to Pounds.

Solution:

#include<iostream>

using namespace std;

int main() {

float kg, lbs;

cout<<"\nEnter Weight in Kilogram: ";

cin>>kg;

lbs = kg*2.20462;

cout<<kg<<" Kg = "<<lbs<<" Pounds";

return 0;

526

}

Question 88

Question:

Write a program to Convert Kilogram to Ounce.

Solution:

#include<iostream>

using namespace std;

int main() {

float kg, ounce;

cout<<"\nEnter Weight in Kilogram: ";

cin>>kg;

ounce = kg*35.274;

cout<<kg<<" Kg = "<<ounce<< " Ounce";

return 0;

}

Question 89

Question:

Write a program to Convert Pounds to Grams.

527

Solution:

#include<iostream>

using namespace std;

int main() {

float pound, gram;

cout<<"\nEnter Weight in Pounds: ";

cin>>pound;

gram = pound*453.592;

cout<<pound<<" Pound = "<<gram<<" Grams";

return 0;

}

Question 90

Question:

Write a program to verify whether a triangle is valid or not using angles.

Solution:

#include <iostream>

using namespace std;

int main() {

int angle1, angle2, angle3, sum;

cout<<"\nEnter the first angle of the triangle: ";

cin>>angle1;

528

cout<<"\nEnter the second angle of the triangle: ";

cin>>angle2;

cout<<"\nEnter the third angle of the triangle: ";

cin>>angle3;

sum = angle1 + angle2 + angle3;

if(sum == 180) {

cout<<"\nThe triangle is valid.";

}

else {

cout<<"\nThe triangle is not valid.";

}

return 0;

}

Question 91

Question:

Write a program to add the digits of a two-digit number that is entered by the user.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y, sum = 0;

cout<<"\nEnter a two-digit number: ";

cin>>x;

y = x;

529

while(y != 0) {

sum = sum + y % 10;

y = y / 10;

}

cout<<"\nSum of digits of "<<x<<" is: "<<sum;

return 0;

}

Question 92

Question:

Write a program to verify if a character you entered is a vowel or a consonant.

Solution:

#include<iostream>

using namespace std;

int main() {

char ch;

cout<<"\nEnter a character: ";

cin>>ch;

if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u' ||

 ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U') {

cout<<ch<<" is a vowel";

}

else {

530

cout<<ch<<" is a consonant";

}

return 0;

}

Question 93

Question:

Write a program to find factorial of a number.

Solution:

#include<iostream>

using namespace std;

int main() {

int i, fact=1, num;

cout<<"\nEnter a number: ";

cin>>num;

for(i=1; i<=num; i++) {

 fact=fact*i;

}

cout<<"\nFactorial of "<<num<<" is: "<<fact;

return 0;

}

531

Question 94

Question:

Write a program to print number of days in a month.

Solution:

#include<iostream>

using namespace std;

int main() {

int x[12]={31,28,31,30,31,30,31,31,30,31,30,31}, m;

cout<<"\nEnter the month number: ";

cin>>m;

if(m>12 || m<1) {

cout<<"Invalid input";

}

else if(m==2) {

cout<<"\nNumber of days in month 2 is either 29 or 28";

}

else {

cout<<"\nNumber of days in month "<<m<< " is: "<<x[m-1];

}

return 0;

}

532

Question 95

Question:

Write a program to concatenate two strings.

Solution:

#include<iostream>

#include<cstring>

using namespace std;

int main() {

char a[1000], b[1000];

cout<<"\nEnter the first string: ";

cin>>a;

cout<<"\nEnter the second string: ";

cin>>b;

strcat(a, b);

cout<<"\nString produced by concatenation is: "<< a;

return 0;

}

Question 96

Question:

Write a program to find maximum between two numbers.

533

534

#include<iostream>

using namespace std;

int main() {

int a,b;

cout<<"Enter two numbers: \n";

cin>>a;

cin>>b;

if(a>b) {

cout<<a<<" is a maximum number";

}

else {

cout<<b<<" is a maximum number";

}

return 0;

}

#include<iostream>

Solution:

Question 97

Question:

Write a program to compare two strings.

Solution:

Type theory is a branch of mathematical logic and
computer science that studies the behavior of types,
which are categories of data that share certain
properties or operations. The goal of type theory is to
formalize the structure and behavior of types, and to
use this formalism to reason about programs, systems,
and mathematical objects.

In type theory, types are used to classify data and to
ensure that operations are applied to the right kind of
data. For example, in a programming language that
supports type checking, a function that is defined to
accept integers will not accept strings, because they are
of a different type. This type checking ensures that the
function is applied only to the appropriate types of
data, which can help prevent errors and improve
program correctness.

Type theory has many applications in computer
science, including programming language design,
software verification, and formal methods. It is also
used in the study of mathematics, where it provides a
way to reason about the behavior of mathematical
objects and to prove theorems using formal logic.

535

#include<iostream>

using namespace std;

int main() {

char ch = 'G';

Question 98

Question:

Write a program to convert the upper case letter to lower case letter.

Solution:

#include<cstring>

using namespace std;

int main() {

char a[100], b[100];

cout<<"Enter the first string: \n";

cin>>a;

cout<<"Enter the second string: \n";

cin>>b;

if (strcmp(a,b) == 0) {

cout<<"The 2 strings are equal.\n";

}

else {

cout<<"The 2 strings are not equal.\n";

}

return 0;

}

Numerical analysis is a branch of mathematics that
deals with the development and implementation of
algorithms for solving mathematical problems using
numerical methods. It involves the study of numerical
algorithms, their implementation, and their analysis in
terms of accuracy, stability, and efficiency.

Numerical analysis is used in many fields, including
engineering, science, finance, and computer science. It
is used to solve problems that cannot be solved
analytically or with closed-form solutions, such as
differential equations, optimization problems, and
systems of linear equations. Numerical analysis also
plays an important role in scientific computing, where
it is used to simulate and model complex systems.

Some of the most common techniques used in
numerical analysis include numerical integration,
numerical differentiation, root-finding algorithms,
linear and nonlinear systems of equations, and
optimization algorithms. These techniques rely on a
combination of mathematical theory, computational
algorithms, and numerical experimentation to develop
and refine numerical methods for solving complex
problems.

To sum up, numerical analysis provides a set of
powerful tools for solving mathematical problems that
cannot be solved analytically. It has applications in a
wide range of fields and is essential for many scientific
and engineering applications.

536

#include<iostream>

using namespace std;

int main() {

int dividend, divisor;

cout<<"\nEnter dividend: ";

cin>>dividend;

cout<<"\nEnter divisor: ";

cin>>divisor;

cout<<"\nQuotient = "<< (dividend / divisor);

cout<<"\nRemainder = "<< (dividend % divisor);

return 0;

}

Question 99

Question:

Write a program to find the quotient and remainder of an entered dividend and divisor.

Solution:

char b = tolower(ch);

cout<<ch<<" in lowercase is represented as "<< b;

return 0;

}

Symbolic computation refers to the manipulation of
mathematical expressions using symbols and rules of
algebra, without numerical computation. In other
words, it involves performing algebraic operations on
variables and mathematical functions, rather than
calculating numerical values.

Symbolic computation can be performed manually,
but it is often done using computer software such as
computer algebra systems (CAS) or programming
languages like Python, MATLAB, or Mathematica.
These tools can perform complex symbolic calculations
that would be difficult, if not impossible, to do by
hand.

Symbolic computation is used in a wide range of
applications, including theoretical physics, engineering,
computer science, cryptography, and more. It enables
researchers and practitioners to explore and understand
mathematical concepts and models, without relying on
numerical approximations.

Question 100

Question:

Write a program to determine the Size of int, float, double and char.

Solution:

#include<iostream>

using namespace std;

int main() {

cout<<"Size of char is: "<<sizeof(char)<<" byte\n";

cout<<"Size of int is: "<<sizeof(int)<<" bytes\n";

cout<<"Size of float is: "<<sizeof(float)<<" bytes\n";

cout<<"Size of double is: "<<sizeof(double)<<" bytes\n";

return 0;

}

Question 101

Question:

Write a program to verify the password until it is correct.

Solution:

#include<iostream>

537

using namespace std;

int main() {

int pwd, i;

while (i!=0) {

cout<<"\nEnter the password: ";

cin>>pwd;

if(pwd==1988) {

cout<<"The password you entered is correct";

i=0;

}

else {

cout<<"Incorrect password, try again";

}

cout<<"\n";

}

return 0;

}

Question 102

Question:

Write a program to find absolute value of a number.

Solution:

#include<iostream>

using namespace std;

538

int main() {

int num;

cout<<"Input a positive or negative number: \n";

cin>>num;

cout<<"\nAbsolute value of "<<"|"<<num<<"|"<<" is: "<<abs(num);

return 0;

}

Question 103

Question:

Write a program that will accept a person's height in cm and classify the person based on

it.

Solution:

#include<iostream>

using namespace std;

int main() {

float ht;

cout<<"\nEnter the height (in cm): ";

cin>>ht;

if(ht < 150.0) {

cout<<"Dwarf.\n";

}

else if((ht >= 150.0) && (ht < 165.0)) {

cout<<"Average Height.\n";

539

}

else if((ht >= 165.0) && (ht <= 195.0)) {

cout<<"Taller.\n";

}

else {

cout<<"Abnormal height.\n";

}

return 0;

}

Question 104

Question:

Write a program to calculate the area of different geometric shapes using switch

statements.

Solution:

#include<iostream>

using namespace std;

int main() {

int choice;

float r, l, w, b, h;

cout<<"\nEnter 1 for area of circle: ";

cout<<"\nEnter 2 for area of rectangle: ";

cout<<"\nEnter 3 for area of triangle: ";

cout<<"\nEnter your choice : ";

cin>>choice;

540

541

switch(choice) {

case 1:

cout<<"Enter the radius of the circle: ";

cin>>r;

cout<<"\nArea of a circle is: " << (3.14*r*r);

break;

case 2:

cout<<"Enter the length and width of the rectangle: \n";

cin>>l;

cin>>w;

cout<<"\nArea of a rectangle is: "<<(l*w);

break;

case 3:

cout<<"Enter the base and height of the triangle: \n";

cin>>b;

cin>>h;

cout<<"\nArea of a triangle is: "<<(0.5*b*h);

break;

default:

cout<<"\nPlease enter a number from 1 to 3.";

break;

}

return 0;

}

Bitbucket is a web-based version control repository hosting service that is used to store and manage code

repositories. It is developed by Atlassian and provides Git and Mercurial-based distributed version control systems

(DVCS) for source code management. With Bitbucket, teams can collaborate on software projects, manage code

repositories, track changes, and perform code reviews. It offers a range of features, such as pull requests, code

branching, and commit history tracking, which allow developers to work together efficiently and effectively.

Bitbucket is integrated with other Atlassian products, such as Jira and Confluence, making it easy to manage issues

and track progress across the entire software development process. It also provides tools for continuous integration

and deployment (CI/CD), allowing teams to automate their build and deployment pipelines. Bitbucket is available

in both cloud-based and self-hosted versions. The cloud-based version offers a range of pricing plans, depending on

the number of users and repositories required. The self-hosted version can be installed on-premise or on a cloud-

based infrastructure, giving organizations greater control over their source code management. Overall, Bitbucket is

a powerful and flexible source code management tool that allows teams to collaborate on software development

projects, manage code repositories, and automate their build and deployment pipelines. It is a popular choice for

teams of all sizes and offers a range of features to support the entire software development process.

542

#include<iostream>

using namespace std;

int main() {

char ch;

cout<<"Enter a character: ";

ch = getchar ();

if(ch == 'y' || ch == 'Y') {

cout<<"Yes\n";

}

else {

cout<<"No\n";

}

return(0);

}

Question 105

Question:

Write a program to accept a character from the keyboard and print "Yes" if it is equal to y.

Otherwise print "No".

Solution:

Question 106

Question:

Write a program that uses bitwise operators to multiply an entered value by four.

IntelliJ IDEA is an integrated development environment (IDE)

used primarily for developing software applications in the Java

programming language. It is developed by JetBrains and is

available in both community and commercial editions. IntelliJ

IDEA offers a range of features that make it a popular choice

among developers, including intelligent code completion, code

analysis, and refactoring tools. It also provides built-in support

for a range of programming languages, including Java, Kotlin,

Groovy, Scala, and JavaScript.

One of the key strengths of IntelliJ IDEA is its support for a

wide range of frameworks and technologies, such as Spring,

Hibernate, and Maven. It also provides integrations with other

tools, such as Git, Subversion, and JUnit, allowing developers to

streamline their development workflows. IntelliJ IDEA offers a

highly customizable user interface and supports a wide range of

plugins and extensions, making it possible to tailor the IDE to

suit the specific needs of the developer. Overall, IntelliJ IDEA

is a powerful and feature-rich IDE that offers a range of tools

and technologies to support software development in the Java

programming language. It is highly customizable and provides

integrations with a range of tools and technologies, making it a

popular choice among developers.

543

#include<iostream>

using namespace std;

int main() {

long x, y;

cout<<"Enter a integer: ";

cin>>x;

y = x;

x = x << 2;

cout<< y<<" x 4 = "<< x;

return 0;

}

#include<iostream>

using namespace std;

int main() {

int x;

cout<<"Enter a number: ";

Solution:

Question 107

Question:

Write a program to check whether a number entered by the user is power of 2 or not.

Solution:

Puppet is a configuration management tool that is widely used in the DevOps culture

to automate the management of IT infrastructure. DevOps is a software development

approach that emphasizes collaboration and communication between development

and operations teams to streamline the software delivery process. In the context of

DevOps, Puppet allows teams to automate the management of infrastructure and

applications, ensuring that all systems are configured and deployed consistently and

reliably. It provides a centralized platform for managing configurations, deployments,

and updates across multiple environments, reducing the time and effort required to

manage complex IT infrastructure.

Puppet works by defining infrastructure as code, which means that configurations

and deployments are defined using code that can be version-controlled, tested, and

audited. This approach helps to eliminate configuration drift and reduces the risk of

errors or inconsistencies in the infrastructure. Using Puppet as part of a DevOps

approach helps to promote collaboration and communication between development

and operations teams, enabling faster and more frequent software releases. It also

allows organizations to scale their infrastructure more easily and respond quickly to

changing business needs. To sum up, Puppet is a powerful tool that plays a key role

in the DevOps culture, providing a centralized platform for managing infrastructure

and applications, and helping to streamline the software delivery process. It promotes

collaboration and communication between development and operations teams,

enabling organizations to deliver software more quickly and efficiently.

544

#include<iostream>

using namespace std;

int main() {

int side1, side2, side3;

cout<<"\nEnter the first side of the triangle: ";

cin>>side1;

cout<<"\nEnter the second side of the triangle: ";

cin>>side2;

cout<<"\nEnter the third side of the triangle: ";

Question 108

Question:

Write a program to determine whether a triangle is scalene, isosceles, or equilateral.

Solution:

cin>>x;

if((x != 0) && ((x &(x - 1)) == 0)) {

cout<<x<<" is a power of 2";

}

else {

cout<<x<<" is not a power of 2";

}

return 0;

}

Chef is a configuration management tool that is widely used in the DevOps

culture to automate the management of IT infrastructure. DevOps is a

software development approach that emphasizes collaboration and

communication between development and operations teams to streamline the

software delivery process. In the context of DevOps, Chef allows teams to

automate the management of infrastructure and applications, ensuring that all

systems are configured and deployed consistently and reliably. It provides a

centralized platform for managing configurations, deployments, and updates

across multiple environments, reducing the time and effort required to

manage complex IT infrastructure. Chef works by defining infrastructure as

code, which means that configurations and deployments are defined using

code that can be version-controlled, tested, and audited. This approach helps

to eliminate configuration drift and reduces the risk of errors or

inconsistencies in the infrastructure. Using Chef as part of a DevOps

approach helps to promote collaboration and communication between

development and operations teams, enabling faster and more frequent

software releases. It also allows organizations to scale their infrastructure

more easily and respond quickly to changing business needs. Chef is highly

extensible and can be used to manage a wide range of systems, including

servers, cloud infrastructure, and containers. It also integrates with a range of

other tools and technologies, such as Jenkins, Git, and Docker, allowing

teams to build end-to-end software delivery pipelines.

cin>>side3;

if(side1 == side2 && side2 == side3) {

cout<<"\nThe given Triangle is equilateral.";

}

else if(side1 == side2 || side2 == side3 || side3 == side1) {

cout<<"\nThe given Triangle is isosceles.";

}

else {

cout<<"\nThe given Triangle is scalene.";

}

return 0;

}

Question 109

Question:

Write a program to print ASCII values of all the letters of the English alphabet from A to Z.

Solution:

#include<iostream>

using namespace std;

int main() {

int i;

for(i='A'; i<='Z'; i++) {

cout<<"ASCII value of "<<char(i)<<"="<<int(i)<<endl;

545

}

return 0;

}

Question 110

Question:

Write a program to find sum of even numbers between 1 to n.

Solution:

#include<iostream>

using namespace std;

int main() {

int i, num, sum=0;

cout<<"Enter a number: ";

cin>>num;

for(i=2; i<=num; i=i+2) {

sum = sum + i;

}

cout<<"\nSum of all even number between 1 to " <<num<< " is: "<< sum;

return 0;

}

546

Question 111

Question:

Write a program to find sum of odd numbers between 1 to n.

Solution:

#include<iostream>

using namespace std;

int main() {

int i, num, sum=0;

cout<<"Enter a number: ";

cin>>num;

for(i=1; i<=num; i=i+2) {

sum = sum + i;

}

cout<<"\nSum of all odd number between 1 to " <<num<< " is: "<< sum;

return 0;

}

Question 112

Question:

Write a program to find maximum number using switch case.

547

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y;

cout<<"Enter any two numbers: \n";

cin>>x;

cin>>y;

switch(x > y) {

case 0: cout<<y<<" is Maximum number";

break;

case 1: cout<<x<<" is Maximum number";

break;

}

return 0;

}

Question 113

Question:

Write a program that allows you to enter the cost price and the selling price of a product

and calculate profit or loss.

Solution:

#include<iostream>

548

549

#include<iostream>

Question 114

Question:

Write a program that display the pattern like a right angle triangle using an asterisk.

Solution:

using namespace std;

int main() {

int cp, sp;

cout<<"\nInput Cost Price: ";

cin>>cp;

cout<<"\nInput Selling Price: ";

cin>>sp;

if(sp > cp) {

cout<<"Profit = "<< (sp - cp);

}

else if(cp > sp) {

cout<<"Loss = "<< (cp - sp);

}

else {

cout<<"No Profit No Loss.";

}

return 0;

}

Apache NetBeans is a free and open-source integrated development

environment (IDE) used primarily for developing software

applications in the Java programming language. It is developed by

the Apache Software Foundation and is available for Windows,

Linux, and macOS operating systems. NetBeans offers a range of

features that make it a popular choice among developers, including

intelligent code completion, debugging tools, and refactoring tools.

It also provides support for a range of programming languages,

including Java, PHP, C++, and HTML/CSS/JavaScript.

One of the key strengths of NetBeans is its support for a wide range

of frameworks and technologies, such as Spring, Hibernate, and

Maven. It also provides integrations with other tools, such as Git,

Subversion, and JUnit, allowing developers to streamline their

development workflows. NetBeans offers a highly customizable

user interface and supports a range of plugins and extensions,

making it possible to tailor the IDE to suit the specific needs of the

developer. To sum up, Apache NetBeans is a powerful and feature-

rich IDE that offers a range of tools and technologies to support

software development in the Java programming language and other

languages. It is highly customizable and provides integrations with a

range of tools and technologies, making it a popular choice among

developers.

550

#include<iostream>

using namespace std;

int main() {

int rows;

cout<<"Input the number of rows: ";

cin>>rows;

for(int x=1; x<=rows; x++) {

for(int y=1; y<=x; y++)

Question 115

Question:

Write a program that display the pattern like a right angle triangle using a number.

Solution:

using namespace std;

int main() {

int rows;

cout<<"Input the number of rows: ";

cin>>rows;

for(int x=1; x<=rows; x++) {

for(int y=1; y<=x; y++)

cout<<"*";

cout<<"\n";

}

return 0;

}

Red Hat is a software company that provides open source

solutions to enterprises. The company was founded in 1993

and is headquartered in Raleigh, North Carolina, USA. Red

Hat is best known for its distribution of the Linux operating

system, which is used by businesses and organizations

around the world. Red Hat provides a wide range of software

products and services, including operating systems,

middleware, storage, virtualization, and cloud computing

solutions. The company's products are designed to be

flexible, scalable, and secure, and they are often used by

businesses to improve efficiency, reduce costs, and increase

agility. Red Hat is also known for its commitment to open

source software, which means that its products are based on

freely available code that can be modified and distributed by

anyone. This approach has helped to create a vibrant

community of developers and users who collaborate to

improve the quality and functionality of the software.

cout<<""<<y;

cout<<"\n";

}

return 0;

}

Question 116

Question:

Write a program to determine the number and sum of all integers between 50 and 100

which are divisible by 2.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, sum=0;

cout<<"Numbers between 50 and 100, divisible by 2: \n";

for(x=51; x<100; x++) {

if(x%2==0) {

cout<<" "<<x;

sum+=x;

}

}

cout<<"\nThe sum: "<< sum;

return 0;

551

}

Question 117

Question:

Write a program that uses the function to determine whether a entered number is even or

odd.

Solution:

#include<iostream>

using namespace std;

int myfunc(int x) {

return (x & 1);

}

int main() {

int x;

cout<<"Enter any number: ";

cin>>x;

if(myfunc(x)) {

cout<<"\nThe number you entered is odd.";

}

else {

cout<<"\nThe number you entered is even.";

}

return 0;

}

552

Question 118

Question:

Write a program to find square root of a entered number.

Solution:

#include<iostream>

#include<cmath>

using namespace std;

int main() {

int x;

cout<<"Enter any number: ";

cin>>x;

cout<<"Square root of "<<x<< " is: "<<(double)sqrt(x);

return 0;

}

Question 119

Question:

Write a program to find power of a entered number using library function.

553

Solution:

#include<iostream>

#include<cmath>

using namespace std;

int main() {

int x, y;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

cout<<x<<"^"<<y<<" = " << (long)pow(x,y);

return 0;

}

Question 120

Question:

Write a program to determine if the character entered is an alphabetic or numeric

character.

Solution:

#include<iostream>

using namespace std;

int main() {

char ch;

cout<<"Enter a character: ";

554

cin>>ch;

if(isdigit(ch)) {

cout<<ch<<" is a Digit";

}

else if(isalpha(ch)) {

cout<<ch<<" is an Alphabet";

}

else {

cout<<ch<<" is not an Alphabet, or a Digit";

}

return 0;

}

Question 121

Question:

Write a program to determine whether the character entered is an alphanumeric character

or not.

Solution:

#include<iostream>

using namespace std;

int main() {

char a;

cout<<"Enter a character: ";

cin>>a;

555

if(isalnum(a)) {

cout<<a<<" is an alphanumeric character.";

}

else {

cout<<a<<" is NOT an alphanumeric character.";

}

return 0;

}

Question 122

Question:

Write a program to determine whether the character entered is an punctuation character

or not.

Solution:

#include<iostream>

using namespace std;

int main() {

char a;

cout<<"Enter a character: ";

cin>>a;

if(ispunct(a)) {

cout<<a<<" is an punctuation character.";

}

else {

556

cout<<a<<" is NOT an punctuation character.";

}

return 0;

}

Question 123

Question:

Write a program to check whether the entered character is a graphic character or not.

Solution:

#include<iostream>

using namespace std;

int main() {

char a;

cout<<"Enter a character: ";

cin>>a;

if(isgraph(a)) {

cout<<a<<" is a graphic character.";

}

else {

cout<<a<<" is NOT a graphic character.";

}

return 0;

}

557

Question 124

Question:

Write a program to list all printable characters using isprint() function.

Solution:

#include<iostream>

using namespace std;

int main() {

int i;

for(i = 1; i <= 127; i++)

if(isprint(i)!= 0)

cout<<" "<<char(i);

return 0;

}

Question 125

Question:

Write a program to check whether the entered character is a hexadecimal digit character

or not.

Solution:

558

#include<iostream>

using namespace std;

int main() {

char a;

cout<<"Enter a character: ";

cin>>a;

if(isxdigit(a)) {

cout<<a<<" is a hexadecimal digit character.";

}

else {

cout<<a<<" is NOT a hexadecimal digit character.";

}

return 0;

}

Question 126

Question:

Write a program to print ASCII value of all control characters.

Solution:

#include<iostream>

using namespace std;

int main() {

int i;

cout<<"The ASCII value of all control characters are: \n";

559

for(i=0; i<=127; i++) {

if(iscntrl(i)!=0)

cout<<"\n "<< i;

}

return 0;

}

Question 127

Question:

Write a program to check whether the given character is a white-space character or not.

Solution:

#include <iostream>

using namespace std;

int main() {

char c;

char ch = ' ';

if(isspace(ch)) {

 cout << "\nNot a white-space character.";

}

else {

 cout << "\nWhite-space character.";

}

return 0;

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x = "Joe";

string* ptr = &x;

cout << ptr << endl;

cout << *ptr << endl;

return 0;

}

?

560

}

Question 128

Question:

Write a program to illustrate isprint() and iscntrl() functions.

Solution:

#include<iostream>

using namespace std;

int main() {

char ch = 'a';

if(isprint(ch)) {

cout<<ch<<" is printable character."<<endl;

}

else {

cout<<ch<<" is not printable character."<<endl;

}

if(iscntrl(ch)) {

cout<<ch<<" is control character."<<endl;

}

else {

cout<<ch<<" is not control character."<<endl;

}

return (0);

561

}

Question 129

Question:

Write a program to calculate surface area of cube.

Solution:

#include<iostream>

using namespace std;

int main() {

int side;

long area;

cout<<"\nEnter the side of cube: ";

cin>>side;

area = 6*side*side;

cout<<"\nThe surface area of cube is: "<< area;

return 0;

}

Question 130

Question:

Write a program to subtract 2 numbers without using subtraction operator.

562

Solution:

#include<iostream>

using namespace std;

int main() {

int x =6, y=3;

cout<<x+(~y)+1;

return 0;

}

Question 131

Question:

Write a program to add 2 numbers without using addition operator.

Solution:

#include<iostream>

using namespace std;

int main() {

int x =6, y=3;

cout<<x-(~y)-1;

return 0;

}

563

Question 132

Question:

Write a program to multiply a number by 2 without using multiplication operator.

Solution:

#include<iostream>

using namespace std;

int main() {

int x=2;

cout<< (x<<1);

return 0;

}

Question 134

Question:

Write a program to divide a number by 2 without using division operator.

Solution:

#include<iostream>

using namespace std;

int main() {

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x[5] = {"Albert", "John", "Mary", "James"};

x[0] = "Joe";

cout << x[0]; // Output: Joe

return 0;

}

564

int x=12;

cout<< (x>>1);

return 0;

}

Question 135

Question:

Write a program to calculate volume of sphere.

Solution:

#include<iostream>

using namespace std;

int main() {

int radius;

float PI = 3.141592;

cout<<"\nEnter the radius of sphere: ";

cin>>radius;

float volume = (4/3)*(PI*radius*radius*radius);

cout<<"\nThe volume of sphere is: "<< volume;

return 0;

}

565

Question 136

Question:

Write a program to calculate volume of ellipsoid.

Solution:

#include<iostream>

using namespace std;

int main() {

int r1, r2, r3;

float PI = 3.141592;

cout<<"\nEnter the radius of the ellipsoid of axis 1: ";

cin>>r1;

cout<<"\nEnter the radius of the ellipsoid of axis 2: ";

cin>>r2;

cout<<"\nEnter the radius of the ellipsoid of axis 3: ";

cin>>r3;

float volume = (4/3)*(PI*r1*r2*r3);

cout<<"\nThe volume of ellipsoid is: "<< volume;

return 0;

}

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x[5] = {"Albert", "John", "Mary", "James", "Bob"};

for(int i = 0; i < 5; i++) { cout << x[i] << endl; }

return 0;

}

?

566

Question 137

Question:

Write a program that uses a for loop to determine power of a number entered by the

user.

Solution:

#include<iostream>

using namespace std;

int main() {

int x, y;

long power = 1;

cout<<"\nEnter the value for x: ";

cin>>x;

cout<<"\nEnter the value for y: ";

cin>>y;

for(int i=1; i<=y; i++) {

power = power * x;

}

cout<<x<<"^"<<y<<" = "<<power;

return 0;

}

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x = "Albert";

string &y = x;

cout << x << endl;

// Output: Albert

cout << y << endl;

// Output: Albert

return 0;

}

567

Question 138

Question:

Write a program to read three numbers and find average of numbers.

Solution:

#include<iostream>

using namespace std;

int main() {

int a,b,c;

float avg;

cout<<"\nEnter the first number: ";

cin>>a;

cout<<"\nEnter the second number: ";

cin>>b;

cout<<"\nEnter the third number: ";

cin>>c;

avg=(a+b+c)/3.0;

cout<<"\nAverage of three numbers is: "<< avg;

return 0;

}

Question 139

Question:

Write a program to read integer "n" and print first three powers (n1, n2, n3).

568

Solution:

#include<iostream>

#include<cmath>

using namespace std;

int main() {

int n;

cout<<"\nEnter a number: ";

cin>>n;

cout<<pow(n, 1)<<" "<< pow(n, 2)<<" "<< pow(n, 3);

return 0;

}

#include<iostream>

using namespace std;

int main() {

string i[2][4] = {

 { "A", "L", "B", "E" },

 { "R", "T", "J", "H" }

 };

cout << i[0][2];

// Output: B

return 0;

}

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string x = "Albert";

cout << &x;

return 0;

} ?

569

#include<iostream>

using namespace std;

int main() {

string x="C++ ";

string y="programming";

x.append(y);

cout<<" \n "<<x<<'\n';

return 0;

// Output: C++ programming

}

#include<iostream>

using namespace std;

int main() {

string x="Albert";

cout<<*x.begin();

return 0;

// Output: A

}

#include<iostream>

using namespace std;

int main() {

string x ="C language";

*x.begin()='J';

cout<<x;

return 0;

// Output: J language

}

570

#include<iostream>

using namespace std;

int main() {

string x="This is a C++ Program.";

x.erase(8,1);

cout<<x;

// Output: This is C++ Program.

return 0;

}

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string txt = "C++ Programming.";

cout << "The length of the text string is: " << txt.size();

// Output: The length of the text string is: 16

return 0;

}

571

#include<iostream>

using namespace std;

int main() {

string x="c++ programming";

x.erase(x.begin()+0);

cout<<x;

// Output: ++ programming

return 0;

}

C++ is an extension of C programming and the programs

written in C language can run in C++ compilers.

572

#include<iostream>

#include<cstring>

using namespace std;

int main() {

string txt = "C++ Programming.";

cout << "The length of the text string is: " << txt.length();

// Output: The length of the text string is: 16

return 0;

}

Information visualization refers to the visual representation of data
or information to facilitate the understanding of complex concepts,
patterns, and relationships. It involves using visual elements such as
charts, graphs, maps, and other visual representations to convey
information and insights.

The main goal of information visualization is to make data and
information more accessible, understandable, and usable for a wide
range of users. By presenting information in a visually compelling
and interactive way, information visualization can help users to
identify trends, patterns, and insights that may not be apparent in
traditional data formats.

Information visualization is used in a wide range of applications,
including business intelligence, scientific research, healthcare,
education, and more. It plays an important role in helping individuals
and organizations make informed decisions based on data-driven
insights. With the increasing availability of big data and
advancements in data visualization tools and techniques, information
visualization is becoming an increasingly important field for data
scientists, designers, and other professionals who work with data.

C++ Program:

#include<bits/stdc++.h>

using namespace std;

int main()

{

 float a =2.33333;

 cout << floor(a) << endl;

 cout << ceil(a) << endl;

 cout << trunc(a) << endl;

 cout << round(a) << endl;

 cout << setprecision(2) << a;

 return 0;

}

C++ Program:

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

 float a = -43;

 cout << abs(a) << endl;

 cout << labs(a) << endl;

 cout << llabs(a) << endl;

 return 0;

}

Output:

2

3

2

2

2.3

Output:

43

43

43

573

JDK JRE JVM

Java Development Kit Java Runtime Environment Java Virtual Machine

It is the tool necessary to compile,

document and package Java

programs.

It provides the class libraries and

other resources that a specific Java

program needs to run.

A virtual machine that enables a

computer to run Java programs

Inheritance

A mechanism in which one class

acquires the properties of another

Abstraction

The methodology of hiding the

implementation details from the user and

only providing the functionality to the

users.

Encapsulation

A process of wrapping code and data

together into a single unit

Polymorphism

The ability of any data to be

processed in more than one form

Collection is a framework that is designed to store the objects and manipulate

the design to store the objects.

574

Java Exercises

Java is the mainstream technology for creating and delivering embedded and mobile software,

games, Internet entertainment, and business software. It serves as the foundation for almost any

sort of networked application. With over 9 million developers across the globe, Java makes it

simple to quickly create, distribute, and use new apps and services. Around 1992, James

Gosling was employed by Sun Labs. A set-top box was being built by Gosling and his team,

who began by "cleaning up" C++ and ultimately came up with a new language and runtime. As a

result, Java or Oak was created. C continues to be the top option among developers when it

comes to programming languages. However, Java is more popular among developers than C. The

second most popular programming language is Java. The common reason for this is because it

facilitates the creation of sophisticated applications that operate well and satisfactorily. In

addition, Java may be installed and operated on any platform. Approximately 3 billion mobile

phones, 125 million TV sets, and every Blu-Ray player currently use Java. You can learn Java

programming and advance your skills by practicing and working through problems. If you learn

best "by example," this is the chapter for you.

575

Question 1

Question:

Solution:

public class MyClass {

public static void main(String[] args) {

}

}

Question 2

Question:

Write a program to compute the perimeter and area of a rectangle.

Solution:

public class MyClass {

public static void main(String[] args) {

int height = 8;

int width = 5;

System.out.print("Hello, World!");

Write a program to print Hello, World!.

576

int perimeter = 2 * (height + width);

System.out.println("Perimeter of the rectangle is: " + perimeter + " cm");

int area = height * width;

System.out.println("Area of the rectangle is: " + area + " square cm");

}

}

Question 3

Question:

Write a program to compute the perimeter and area of a circle.

Solution:

public class MyClass {

public static void main(String[] args) {

int radius = 4;

float perimeter = (float)(2 * 3.14 * radius);

System.out.printf("Perimeter of the circle is: %f cm\n", perimeter);

float area = (float)(3.14 * radius * radius);

System.out.printf("Area of the circle is: %f square cm\n", area);

}

}

public class MyClass {

public static void main(String[] args) {

int x = 65;

x = 80;

System.out.println(x);

}

}

// Output: 80

577

Question 4

Question:

Write a program that accepts two numbers from the user and calculate the sum of the two

numbers.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b, sum;

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

b = STDIN_SCANNER.nextInt();

sum = a + b;

System.out.print("\nSum of the above two numbers is: " + sum);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

public class MyClass {

public static void main(String[] args) {

String x = "Einstein";

System.out.println("Albert " + x);

}

}
// Output: Albert Einstein

578

Question 5

Question:

Write a program that accepts two numbers from the user and calculate the product of the

two numbers.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b, mult;

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

b = STDIN_SCANNER.nextInt();

mult = a * b;

System.out.print("\nProduct of the above two numbers is: " + mult);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 6

Question:

Write a program that accepts three numbers and find the largest of three.

579

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y, z;

System.out.print("\nEnter the first number: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

y = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the third number: ");

z = STDIN_SCANNER.nextInt();

// if x is greater than both y and z, x is the largest

if(x >= y && x >= z) {

System.out.print("\n" + x + " is the largest number.");

}

// if y is greater than both x and z, y is the largest

if(y >= x && y >= z) {

System.out.print("\n" + y + " is the largest number.");

}

// if z is greater than both x and y, z is the largest

if(z >= x && z >= y) {

System.out.print("\n" + z + " is the largest number.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

580

Question 7

Question:

Write a program that reads three floating values and check if it is possible to make a

triangle with them. Also calculate the perimeter of the triangle if the entered values are

valid.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float x, y, z;

System.out.print("\nEnter the first number: ");

x = STDIN_SCANNER.nextFloat();

System.out.print("\nEnter the second number: ");

y = STDIN_SCANNER.nextFloat();

System.out.print("\nEnter the third number: ");

z = STDIN_SCANNER.nextFloat();

if(x < y + z && y < x + z && z < y + x) {

System.out.printf("\nPerimeter of the triangle is: %f\n", x + y + z);

} else {

System.out.print("\nIt is impossible to form a triangle.");

581

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 8

Question:

Write a program that reads an integer between 1 and 7 and print the day of the week in

English.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int day;

System.out.print("\nEnter a number between 1 to 7 to get the day name: ");

day = STDIN_SCANNER.nextInt();

switch(day) {

case 1:

 System.out.println("Monday");

 break;

case 2:

 System.out.println("Tuesday");

582

 break;

case 3:

 System.out.println("Wednesday");

 break;

case 4:

 System.out.println("Thursday");

 break;

case 5:

 System.out.println("Friday");

 break;

case 6:

 System.out.println("Saturday");

 break;

case 7:

 System.out.println("Sunday");

 break;

default:

 System.out.print("Enter a number between 1 to 7.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 9

Question:

Write a program to find the sum of two numbers.

583

Solution:

public class MyClass {

public static void main(String[] args) {

int a, b, sum;

a = 1;

b = 2;

sum = a + b;

System.out.print("The sum of a and b = " + sum);

}

}

Question 10

Question:

Write a program to find the square of a number.

Solution:

public class MyClass {

public static void main(String[] args) {

int a, b;

a = 2;

b = (int)Math.pow(a, 2);

System.out.print("The square of a = " + b);

}

}

584

Question 11

Question:

Write a program to find the greatest of two numbers.

Solution:

public class MyClass {

public static void main(String[] args) {

int a, b;

a = 2;

b = 3;

if(a > b) {

System.out.print("a is greater than b");

} else {

System.out.print("b is greater than a");

}

}

}

Question 12

Question:

Write a program to print the average of the elements in the array.

585

Solution:

public class MyClass {

public static void main(String[] args) {

int avg = 0, sum = 0;

int[] num = {16, 18, 20, 25, 36};

for(int i = 0; i < 5; i++) {

sum = sum + num[i];

avg = sum / 5;

}

System.out.println("Sum of the Elements in the array is: " + sum);

System.out.println("Average of the elements in the array is: " + avg);

}

}

Question 13

Question:

Write a program that prints all even numbers between 1 and 25.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.println("Even numbers between 1 to 25:");

for(int i = 1; i <= 25; i++) {

586

if(i % 2 == 0) {

System.out.print(i + " ");

}

}

}

}

Question 14

Question:

Write a program that prints all odd numbers between 1 and 50.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.println("Odd numbers between 1 to 50:");

for(int i = 1; i <= 50; i++) {

if(i % 2 != 0) {

System.out.print(i + " ");

}

}

}

}

public class MyClass {

public static void main(String[] args) {

byte x = 100;

System.out.println(x);

}

}

// Output: 100

587

Question 15

Question:

Write a program to print the first 10 numbers starting from one together with their

squares and cubes.

Solution:

public class MyClass {

public static void main(String[] args) {

for(int i = 1; i <= 10; i++) {

System.out.println("Number = " + i + " its square = " + (i * i) + " its cube

= " + (i * i * i));

}

}

}

Question 16

Question:

Write a program:

If you enter a character M

Output must be: ch = M.

588

Solution:

public class MyClass {

public static void main(String[] args) throws Exception {

char c;

System.out.print("Enter a character: ");

c = (char)System.in.read();

System.out.println("ch = " + c);

}

}

Question 17

Question:

Write a program to print the multiplication table of a number entered by the user.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int n;

System.out.print("Enter any number: ");

n = STDIN_SCANNER.nextInt();

for(int i = 1; i <= 5; i++) {

System.out.println(n + " * " + i + " = " + (n * i));

}

589

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 18

Question:

Write a program to print the product of the first 10 digits.

Solution:

public class MyClass {

public static void main(String[] args) {

int product = 1;

for(int i = 1; i <= 10; i++) {

product = product * i;

}

System.out.print("The product of the first 10 digits is: " + product);

}

}

Question 19

Question:

Write a program to print whether the given number is positive or negative.

590

Solution:

public class MyClass {

public static void main(String[] args) {

int a;

a = -35;

if(a > 0) {

System.out.print("Number is positive");

} else {

System.out.print("Number is negative");

}

}

}

Question 20

Question:

Write a program to check the equivalence of two numbers entered by the user.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

591

System.out.print("\nEnter the first number: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

y = STDIN_SCANNER.nextInt();

if(x - y == 0) {

System.out.print("\nThe two numbers are equivalent");

} else {

System.out.print("\nThe two numbers are not equivalent");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 21

Question:

Write a program to print the remainder of two numbers entered by the user.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b, c;

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

592

b = STDIN_SCANNER.nextInt();

c = a % b;

System.out.print("\n The remainder of " + a + " and " + b + " is: " + c);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 22

Question:

Write a program to print the characters from A to Z.

Solution:

public class MyClass {

public static void main(String[] args) {

for(byte i = 'A'; i <= 'Z'; i++) {

System.out.println((char)Byte.toUnsignedInt(i));

}

}

}

public class MyClass {

public static void main(String[] args) {

boolean x = true;

boolean y = false;

System.out.println(x); // Output: true

System.out.println(y); // Output: false

}

}

593

Question 23

Question:

Write a program to print the length of the entered string.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

String a;

Scanner scan = new Scanner(System.in);

System.out.print("Enter Your Name : ");

a = scan.nextLine();

System.out.println("The length of the String is: " + a.length());

}

}

Question 24

Question:

Write a program to check whether the given character is a lower case letter or not.

Solution:

594

public class MyClass {

public static void main(String[] args) {

char ch = 'a';

if(Character.isLowerCase(ch)) {

System.out.println("The given character is a lower case letter");

}

else {

System.out.println("The given character is a upper case letter");

}

}

}

Question 25

Question:

Write a program to check whether the given character is a upper case letter or not.

Solution:

public class MyClass {

public static void main(String[] args) {

char ch = 'A';

if(Character.isUpperCase(ch)) {

System.out.println("The given character is a upper case letter");

}

else {

System.out.println("The given character is a lower case letter");

}

595

}

}

Question 26

Question:

Write a program to convert the lower case string to upper case string.

Solution:

public class MyClass {

public static void main(String[] args) {

String a = "albert einstein";

System.out.println(a.toUpperCase());

}

}

Question 27

Question:

Write a program that takes a distance in centimeters and outputs the corresponding value

in inches.

596

Solution:

import java.util.Scanner;

public class MyClass {

public final static double X = 2.54;

public static void main(String[] args) {

double inch, cm;

System.out.print("Enter the distance in cm: ");

cm = STDIN_SCANNER.nextDouble();

inch = cm / X;

System.out.printf("\nDistance of %.2f cms is equal to %.2f inches", cm,

inch);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 28

Question:

Write a program to print the output:

Einstein [0] = E

Einstein [1] = I

Einstein [2] = N

Einstein [3] = S

Einstein [4] = T

Einstein [5] = E

Einstein [6] = I

Einstein [7] = N

597

Solution:

public class MyClass {

public static void main(String[] args) throws Exception{

int i;

char [] num = {'E' , 'I', 'N', 'S', 'T', 'E', 'I', 'N'};

for(i=0; i<8; i++)

System.out.println("Einstein [" + i + "] = " + num[i]);

}

}

Question 29

Question:

Write a program to print "Hello World" 10 times.

Solution:

public class MyClass {

public static void main(String[] args) {

for(int i = 1; i <= 10; i++) {

System.out.println("Hello World ");

}

}

}

public class MyClass {

static void myMethod(String x) {

System.out.println(x + " Einstein");

}

public static void main(String[] args) {

myMethod("David");

myMethod("Albert");

myMethod("Elsa");

}

}

?

598

Question 30

Question:

Write a program to print first 5 numbers using do while loop statement.

Solution:

public class MyClass {

public static void main(String[] args) {

int i = 1;

do {

System.out.println(i++);

} while(i <= 5);

}

}

Question 31

Question:

Write a program to check whether a character is an alphabet or not.

Solution:

599

import java.util.Scanner;

public class Main {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.println("Enter any caracter: ");

char c = scanner.next().charAt(0);

if((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) {

System.out.println(c + " is a Alphabet.");

} else {

System.out.println(c + " is not a Alphabet.");

}

}

}

Question 32

Question:

Write a program to check whether a entered number is even or odd.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a;

System.out.print("Enter any number: ");

600

a = STDIN_SCANNER.nextInt();

if(a % 2 == 0) {

System.out.print("The entered number is even");

} else {

System.out.print("The entered number is odd");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 33

Question:

Write a program to print the ASCII value of the given character.

Solution:

public class MyClass {

public static void main(String[] args) {

byte ch = 'A';

System.out.print("The ASCII value of " + ((char)Byte.toUnsignedInt(ch)) + "

is: " + ch);

}

}

601

Question 34

Question:

Write a program that will print all numbers between 1 to 50 which divided by a specified

number and the remainder will be 2.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter a number: ");

x = STDIN_SCANNER.nextInt();

for(int i = 1; i <= 50; i++) {

if(i % x == 2) {

System.out.println(i);

}

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Pointers are not used in Java because doing so would

weaken the language's security and robustness and

make it more complicated.

602

Question 35

Question:

Write a program to determine whether two numbers in a pair are in ascending or

descending order.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b;

System.out.print("\nEnter a pair of numbers (for example 22,12 | 12,22): ");

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

b = STDIN_SCANNER.nextInt();

if(a > b) {

System.out.print("\nThe two numbers in a pair are in descending order.");

} else {

System.out.print("\nThe two numbers in a pair are in ascending order.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

603

Question 36

Question:

Write a program that reads two numbers and divides one by the other. Specify "Division

not possible" if that is not possible.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b;

float c;

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

b = STDIN_SCANNER.nextInt();

if(b != 0) {

c = (float)a / (float)b;

System.out.printf("\n%d/%d = %.1f", a, b, c);

} else {

System.out.println("\nDivision not possible.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

604

Question 37

Question:

Write a program that will print all numbers between 1 to 50 which divided by a specified

number and the remainder is equal to 2 or 3.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter a number: ");

x = STDIN_SCANNER.nextInt();

for(int i = 1; i <= 50; i++) {

if(i % x == 2 || i % x == 3) {

System.out.println(i);

}

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

public class MyClass {

public static void main(String[] args) {

double y = 9.78d;

int x = (int) y;

System.out.println(x); // Output: 9

}

}

605

Question 38

Question:

Write a program that adds up all numbers between 1 and 100 that are not divisible by 12.

Solution:

public class MyClass {

public static void main(String[] args) {

int x = 12, sum = 0;

for(int i = 1; i <= 100; i++) {

if(i % x != 0) {

sum += i;

}

}

System.out.println("\nSum: " + sum);

}

}

Question 39

Question:

Write a program to calculate the value of x where x = 1 + 1/2 + 1/3 + … + 1/50.

Solution:

606

public class MyClass {

public static void main(String[] args) {

float x = 0;

for(int i = 1; i <= 50; i++) {

x += (float)1 / i;

}

System.out.printf("Value of x: %.2f\n", x);

}

}

Question 40

Question:

Write a program that reads a number and find all its divisor.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("\nEnter a number: ");

x = STDIN_SCANNER.nextInt();

System.out.print("All the divisor of " + x + " are: ");

for(int i = 1; i <= x; i++) {

if(x % i == 0) {

System.out.print("\n" + i);

607

}

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 41

Question:

Write a program to find the incremented and decremented values of two numbers.

Solution:

public class MyClass {

public static void main(String[] args) {

int a, b, c, d, e, f;

a = 10;

b = 12;

c = a + 1;

d = b + 1;

e = a - 1;

f = b - 1;

System.out.print("\nThe incremented value of a =" + c);

System.out.print("\nThe incremented value of b =" + d);

System.out.print("\nThe decremented value of a =" + e);

System.out.print("\nThe decremented value of b =" + f);

}

}

608

Question 42

Question:

Write a program to find square of a entered number using functions.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int answer;

answer = square();

System.out.print("The square of the entered number is: " + answer);

}

public static int square() {

int x;

System.out.print("Enter any number: ");

x = STDIN_SCANNER.nextInt();

return x * x;

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

609

Question 43

Question:

Write a program that accepts principal amount, rate of interest, time and compute the

simple interest.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int p, r, t, SI;

System.out.print("\nEnter the principal amount: ");

p = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the rate of interest: ");

r = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the time: ");

t = STDIN_SCANNER.nextInt();

SI = (p * r * t) / 100;

System.out.print("\nSimple interest is: " + SI);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

610

Question 44

Question:

Write a program that swaps two numbers without using third variable.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b;

System.out.print("\nEnter the value for a: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for b: ");

b = STDIN_SCANNER.nextInt();

System.out.print("\nBefore swapping: " + a + " " + b);

a = a + b;

b = a - b;

a = a - b;

System.out.print("\nAfter swapping: " + a + " " + b);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

611

Question 45

Question:

Write a program to compute the area of a hexagon.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter the length of a side of the hexagon: ");

double s = input.nextDouble();

double area = (6*(s*s))/(4*Math.tan(Math.PI/6));

System.out.print("The area of the hexagon is: " + area);

}

}

Question 46

Question:

Write a program to print the output:

body [b] = b

body [o] = o

612

body [d] = d

body [y] = y

Solution:

public class MyClass {

public static void main(String[] args) throws Exception{

int i;

char [] body = {'b', 'o', 'd', 'y'};

for(i=0; i<4; i++) {

System.out.println("body [" + body [i] + "] = " + body [i]);

}

}

}

Question 47

Question:

Write a program to calculate the discounted price and the total price after discount

Given:

If purchase value is greater than 1000, 10% discount

If purchase value is greater than 5000, 20% discount

If purchase value is greater than 10000, 30% discount.

Solution:

613

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

double pv;

System.out.print("Enter purchased value: ");

pv = STDIN_SCANNER.nextDouble();

if(pv > 1000) {

System.out.printf("\n Discount = %f", pv * 0.1);

System.out.printf("\n Total = %f", pv - pv * 0.1);

} else if(pv > 5000) {

System.out.printf("\n Discount = %f", pv * 0.2);

System.out.printf("\n Total = %f", pv - pv * 0.2);

} else {

System.out.printf("\n Discount = %f", pv * 0.3);

System.out.printf("\n Total = %f", pv - pv * 0.3);

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 48

Question:

Write a program to print the first ten natural numbers using while loop statement.

Solution:

public class MyClass {

614

public static void main(String[] args) {

int i = 1;

while(i <= 10) {

System.out.println(i++);

}

}

}

Question 49

Question:

Write a program to shift inputted data by two bits to the left.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter the integer from keyboard: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEntered value: " + x + " ");

System.out.print("\nThe left shifted data is: " + (x <<= 2) + " ");

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Albert");

x.add("Joe");

x.add("Alan");

x.add("Mary");

System.out.println(x);

}

}

?

615

Question 50

Question:

Write a program to shift inputted data by two bits to the Right.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter the integer from keyboard: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEntered value: " + x + " ");

System.out.print("\nThe right shifted data is: " + (x >>= 2) + " ");

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 51

Question:

Write a program to calculate the exact difference between x and 21. Return three times

the absolute difference if x is greater than 21.

616

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter the value for x: ");

x = STDIN_SCANNER.nextInt();

if(x <= 21) {

System.out.print(Math.abs(x - 21));

} else if(x >= 21) {

System.out.print(Math.abs(x - 21) * 3);

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 52

Question:

Write a program that reads in two numbers and determine whether the first number is a

multiple of the second number.

Solution:

617

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.print("\nEnter the first number: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

y = STDIN_SCANNER.nextInt();

if(x % y == 0) {

System.out.println("\n" + x + " is a multiple of " + y + ".");

} else {

System.out.println("\n" + x + " is not a multiple of " + y + ".");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 53

Question:

Write a program to display the system time.

Solution:

public class MyClass {

public static void main(String[] args) {

618

System.out.format("\nCurrent Date time: %tc%n\n",

System.currentTimeMillis());

}

}

Question 54

Question:

Write a program to convert Celsius into Fahrenheit.

Solution:

public class MyClass {

public static void main(String[] args) {

float fahrenheit, celsius;

celsius = 36;

fahrenheit = (celsius * 9) / 5 + 32;

System.out.printf("\nTemperature in fahrenheit is: %f", fahrenheit);

}

}

public class MyClass {

public static void main(String[] args) {

int y = 9;

double x = y;

System.out.println(x); // Output: 9.0

}

}

619

Question 55

Question:

Write a program that will examine two inputted integers and return true if either of them

is 50 or if their sum is 50.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

if(x == 50 || y == 50 || x + y == 50) {

System.out.print("\nTrue");

} else {

System.out.print("\nFalse");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

620

Question 56

Question:

Write a program that counts the even, odd, positive, and negative values among eighteen

integer inputs.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, even = 0, odd = 0, positive = 0, negative = 0;

System.out.println("\nPlease enter 18 numbers:");

for(int i = 0; i < 18; i++) {

x = STDIN_SCANNER.nextInt();

if(x > 0) {

 positive++;

}

if(x < 0) {

 negative++;

}

if(x % 2 == 0) {

 even++;

}

if(x % 2 != 0) {

 odd++;

}

}

System.out.print("\nNumber of even values: " + even);

621

System.out.print("\nNumber of odd values: " + odd);

System.out.print("\nNumber of positive values: " + positive);

System.out.print("\nNumber of negative values: " + negative);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 57

Question:

Write a program to check whether the person is a senior citizen or not.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int age;

System.out.print("Enter age: ");

age = STDIN_SCANNER.nextInt();

if(age >= 60) {

System.out.print("Senior citizen");

} else {

System.out.print("Not a senior citizen");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Albert");

x.add("Joe");

x.add("Alan");

x.add("Mary");

System.out.println(x.get(0));

// Output: Albert

}

}

622

}

Question 58

Question:

Write a program that reads a student's three subject scores (0-100) and computes the

average of those scores.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float score, totalScore = 0;

int subject = 0;

System.out.println("Enter three subject scores (0-100):");

while(subject != 3) {

score = STDIN_SCANNER.nextFloat();

if(score < 0 || score > 100) {

System.out.println("Please enter a valid score.");

} else {

totalScore += score;

subject++;

}

}

System.out.printf("Average score = %.2f\n", totalScore / 3);

}

623

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 59

Question:

What results would the following programs produce?

public class MyClass {

public static void main(String[] args) {

for(int i = 1; i <= 5; i++) {

 if(i == 3) {

 break;

 }

System.out.println(i);

}

}

}

Solution:

1

2

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Albert");

x.add("Joe");

x.add("Alan");

x.add("Mary");

x.clear();

System.out.println(x);

// Output: []

}

}

624

public class MyClass {

public static void main(String[] args) {

System.out.println(-7 + 9 * 5);

System.out.println((68+7) % 8);

System.out.println(50 + -6*5 / 5);

System.out.println(6 + 25 / 3 * 6 - 8 % 2);

}

}

Solution:

38

3

44

54

public class MyClass {

public static void main(String[] args) {

for(;;) {

System.out.println("This loop will run forever.");

}

}

}

Solution:

625

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

This loop will run forever.

public class MyClass {

public static void main(String[] args) {

System.out.println((35.5 * 3.7 - 3.6 * 7.5) / (60.8 - 8.9));

}

}

Solution:

2.010597302504817

public class MyClass {

public static void main(String[] args) {

System.out.println("linux");

System.exit(0);

System.out.println("php");

}

}

626

Solution:

linux

public class MyClass {

public static void main(String[] args) {

for(int i = 1; i <= 5; i++) {

 if(i == 3) {

 continue;

 }

System.out.print(i + "\n ");

}

}

}

Solution:

1

2

4

5

public class MyClass {

public static void main(String[] args) {

int a = 10, b = 20, c;

c = a < b ? a : b;

System.out.print(c);

public class MyClass {

// Create a myfunc() method with an integer parameter called x

static void myfunc(int x) {

// If x is less than 18, print "Access denied"

if(x < 18) {

System.out.println("Access denied");

// If x is greater than, or equal to, 18, print "Access granted"

} else {

System.out.println("Access granted");

}

}

public static void main(String[] args) {

myfunc(25); // Call the myfunc method and pass along an age of 25

}

}

?

627

}

}

Solution:

10

public class MyClass {

public final static int A = 15;

public static void main(String[] args) {

int x;

x = A;

System.out.print(x);

}

}

Solution:

15

public class MyClass {

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Albert");

x.add("Joe");

x.add("Alan");

x.add("Mary");

for(int i = 0; i < x.size(); i++) {

 System.out.println(x.get(i));

}

}

} ?
628

public static void main(String[] args) {

for(int i = 1; i <= 3; i++) {

System.out.print((i & 1) != 0 ? "odd\n" : "even\n");

}

System.exit(0);

}

}

Solution:

odd

even

odd

public class MyClass {

public static void main(String[] args) {

double a, b;

a = -2.5;

b = Math.abs(a);

System.out.printf("|%.2f| = %.2f\n", a, b);

}

}

Solution:

629

|-2.50| = 2.50

public class MyClass {

public static void main(String[] args) {

int x = 12, y = 3;

System.out.println(Math.abs(-x - y));

}

}

Solution:

15

public class MyClass {

public static void main(String[] args) {

int x = 12, y = 3;

System.out.println(-(-x - y));

}

}

Solution:

import java.util.ArrayList;

import java.util.Iterator;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Albert");

x.add("John");

x.add("James");

x.add("Mary");

Iterator<String> it = x.iterator();

System.out.println(it.next());

// Output: Albert

}

}

630

15

public class MyClass {

public static void main(String[] args) {

int x = 12, y = 3;

System.out.println(x - -y);

}

}

Solution:

15

public class MyClass {

 static void myMethod() {

 System.out.println("Anyone who has never made a mistake has never tried

anything new.");

 }

public static void main(String[] args) {

 myMethod();

 myMethod();

 myMethod();

}

}

631

Solution:

Anyone who has never made a mistake has never tried anything new.

Anyone who has never made a mistake has never tried anything new.

Anyone who has never made a mistake has never tried anything new.

Question 60

Question:

Write a program to find the size of an array.

Solution:

public class MyClass {

public static void main(String[] args) {

int[] num = {11, 22, 33, 44, 55, 66};

int n = (int)num.length;

System.out.println("Size of the array is: " + n);

}

}

632

Question 61

Question:

Write a program that prints a sequence from 1 to a given integer, inserts a plus sign

between these numbers, and then removes the plus sign at the end of the sequence.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, i;

System.out.println("\nEnter a integer: ");

x = STDIN_SCANNER.nextInt();

if(x > 0) {

System.out.println("Sequence from 1 to " + x + ":");

 for(i = 1; i < x; i++) {

 System.out.print(i + "+");

 }

System.out.println(i);

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

633

Question 62

Question:

Write a program to verify whether a triangle's three sides form a right angled triangle or

not.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b, c;

System.out.println("Enter the three sides of a triangle: ");

a = STDIN_SCANNER.nextInt();

b = STDIN_SCANNER.nextInt();

c = STDIN_SCANNER.nextInt();

if(a * a + b * b == c * c || a * a + c * c == b * b || b * b + c * c == a *

a) {

 System.out.println("Triangle's three sides form a right angled

triangle.");

} else {

 System.out.println("Triangle's three sides does not form a right angled

triangle.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

634

Question 63

Question:

Write a program that will find the second-largest number among the user's input of three

numbers.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b, c;

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

b = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the third number: ");

c = STDIN_SCANNER.nextInt();

if(a > b && a > c) {

 if(b > c) {

 System.out.print("\n" + b + " is second largest number among three

numbers");

 } else {

 System.out.print("\n" + c + " is second largest number among three

numbers");

 }

} else if(b > c && b > a) {

 if(c > a) {

635

 System.out.print("\n" + c + " is second largest number among three

numbers");

 } else {

 System.out.print("\n" + a + " is second largest number among

three numbers");

}

} else if(a > b) {

 System.out.print("\n" + a + " is second largest number among three

numbers");

 } else {

 System.out.print("\n" + b + " is second largest number among three

numbers");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 64

Question:

Write a program to calculate the sum of the two given integer values. Return three times

the sum of the two values if they are equal.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.print(myfunc(3, 5));

636

System.out.print("\n" + myfunc(6, 6));

}

public static int myfunc(int a, int b) {

return a == b ? (a + b) * 3 : a + b;

}

}

Question 65

Question:

Write a program that accepts minutes as input, and display the total number of hours and

minutes.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int mins, hrs;

System.out.print("Input minutes: ");

mins = STDIN_SCANNER.nextInt();

hrs = mins / 60;

mins = mins % 60;

System.out.println("\n" + hrs + " Hours, " + mins + " Minutes.");

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

637

Question 66

Question:

Write a program to determine whether a positive number entered by the user is a multiple

of three or five.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("\nEnter a number: ");

x = STDIN_SCANNER.nextInt();

if(x % 3 == 0 || x % 5 == 0) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

638

Question 67

Question:

Write a program to verify whether one of the two entered integers falls within the range

of 100 to 200 included.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

if(x >= 100 && x <= 200 || y >= 100 && y <= 200) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

639

Question 68

Question:

Write a program to determine which of the two given integers is closest to the value 100.

If the two numbers are equal, return 0.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.print(myfunc(86, 99));

System.out.print("\n" + myfunc(55, 55));

System.out.print("\n" + myfunc(65, 80));

}

public static int myfunc(int a, int b) {

int x = Math.abs(a - 100);

int y = Math.abs(b - 100);

return x == y ? 0 : (x < y ? a : b);

}

}

public class MyClass {

public static void main(String[] args) {

int a = 15;

int b = 13;

// returns false because 15 is not equal to 13

System.out.println(a == b);

}

}

640

Question 69

Question:

Write a program to determine whether a positive number entered by the user is a multiple

of three or five, but not both.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("\nEnter a number: ");

x = STDIN_SCANNER.nextInt();

if(x % 3 == 0 ^ x % 5 == 0) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

public class MyClass {

public static void main(String[] args) {

int x = 15;

// returns true because 15 is greater than 13 AND 15 is less than 30

System.out.println(x > 13 && x < 30);

}

}

641

Question 70

Question:

Write a program to determine whether two entered non-negative numbers have the same

last digit.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

if(Math.abs(x % 10) == Math.abs(y % 10)) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

642

Question 71

Question:

Write a program to determine whether a given non-negative number is a multiple of 12 or

it is one more than a multiple of 12.

Solution:

public class MyClass {

public static void main(String[] args) {

int x = 43;

if(x % 12 == 0 || x % 12 == 1) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

}

Question 72

Question:

Write a program that accepts two integers and returns true when one of them equals 6, or

when their sum or difference equals 6.

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<Integer> x = new ArrayList<Integer>();

x.add(30);

x.add(45);

x.add(50);

x.add(65);

for(int i : x) {

 System.out.println(i);

}

}

}

?

643

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

if(x == 6 || y == 6 || x + y == 6 || Math.abs(x - y) == 6) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 73

Question:

Write a program to check whether it is possible to add two integers to get the third

integer from three entered integers.

Solution:

644

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y, z;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for z: ");

z = STDIN_SCANNER.nextInt();

if(x == y + z || y == x + z || z == x + y) {

 System.out.print("True");

} else {

 System.out.print("False");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 74

Question:

Write a program that converts kilometers per hour to miles per hour.

Solution:

645

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float kmph;

System.out.print("Enter kilometers per hour: ");

kmph = STDIN_SCANNER.nextFloat();

System.out.printf("\n%f miles per hour", kmph * 0.6213712);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 75

Question:

Write a program to calculate area of an ellipse.

Solution:

import java.util.Scanner;

public class MyClass {

public final static double PI = 3.141592;

public static void main(String[] args) {

float major, minor;

System.out.print("\nEnter length of major axis: ");

major = STDIN_SCANNER.nextFloat();

System.out.print("\nEnter length of minor axis: ");

646

minor = STDIN_SCANNER.nextFloat();

System.out.printf("\nArea of an ellipse = %.4f", PI * major * minor);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 76

Question:

Write a program to calculate the sum of three given integers. Return the third value if the

first two values are equal.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.print("\n" + myfunc(11, 11, 11));

System.out.print("\n" + myfunc(11, 11, 16));

System.out.print("\n" + myfunc(18, 15, 10));

}

public static int myfunc(int a, int b, int c) {

if(a == b && b == c) {

 return 0;

}

if(a == b) {

 return c;

}

647

if(a == c) {

 return b;

}

if(b == c) {

 return a;

} else {

 return a + b + c;

}

}

}

Question 77

Question:

Write a program to convert bytes to kilobytes.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

double bytes;

System.out.print("\nEnter number of bytes: ");

bytes = STDIN_SCANNER.nextDouble();

System.out.printf("\nKilobytes: %.2f", bytes / 1024);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Apple");

x.add("Lemon");

x.add("Kiwi");

x.add("Orange");

for(String i : x) {

 System.out.println(i);

}

}

}

?

648

}

Question 78

Question:

Write a program to convert megabytes to kilobytes.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

double megabytes, kilobytes;

System.out.print("\nInput the amount of megabytes to convert: ");

megabytes = STDIN_SCANNER.nextDouble();

kilobytes = megabytes * 1_024;

System.out.printf("\nThere are %f kilobytes in %f megabytes.", kilobytes,

megabytes);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

649

Question 79

Question:

Write a program to count the number of even elements in an integer array.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int[] array = new int[1000];

int arrSize, even = 0;

System.out.print("Input the size of the array: ");

arrSize = STDIN_SCANNER.nextInt();

System.out.println("Enter the elements in array: ");

for(int i = 0; i < arrSize; i++) {

 array[i] = STDIN_SCANNER.nextInt();

}

for(int i = 0; i < arrSize; i++) {

 if(array[i] % 2 == 0) {

 even++;

}

}

System.out.print("Number of even elements: " + even);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

650

Question 80

Question:

Write a program to count the number of odd elements in an integer array.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int[] array = new int[1000];

int arrSize, odd = 0;

System.out.print("Input the size of the array: ");

arrSize = STDIN_SCANNER.nextInt();

System.out.println("Enter the elements in array: ");

for(int i = 0; i < arrSize; i++) {

 array[i] = STDIN_SCANNER.nextInt();

}

for(int i = 0; i < arrSize; i++) {

 if(array[i] % 2 != 0) {

 odd++;

}

}

System.out.print("Number of odd elements: " + odd);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

651

}

Question 81

Question:

Write a program that will accept two integers and determine whether or not they are

equal.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.println("Input the values for x and y: ");

x = STDIN_SCANNER.nextInt();

y = STDIN_SCANNER.nextInt();

if(x == y) {

 System.out.println("x and y are equal");

} else {

 System.out.println("x and y are not equal");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

652

Question 82

Question:

Write a program to find the third angle of a triangle if two angles are given.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int angle1, angle2;

System.out.print("\nEnter the first angle of the triangle: ");

angle1 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second angle of the triangle: ");

angle2 = STDIN_SCANNER.nextInt();

System.out.print("\nThird angle of the triangle is: " + (180 - (angle1 +

angle2)));

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 83

Question:

Write a program to determine whether a particular year is a leap year or not.

653

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int year;

System.out.print("Enter the year: ");

year = STDIN_SCANNER.nextInt();

if(year % 400 == 0) {

 System.out.print("\n" + year + " is a leap year.");

} else if(year % 100 == 0) {

 System.out.print("\n" + year + " is a not leap year.");

} else if(year % 4 == 0) {

 System.out.print("\n" + year + " is a leap year.");

} else {

 System.out.print("\n" + year + " is not a leap year.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 84

Question:

Write a program that reads the candidate's age and determine a candidate's eligibility to

cast his own vote.

654

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int age;

System.out.print("\nEnter the age of the candidate: ");

age = STDIN_SCANNER.nextInt();

if(age < 18) {

 System.out.print("\nWe apologize, but the candidate is not able to cast

his vote.");

 System.out.print("\nAfter " + (18 - age) + " year, the candidate would be

able to cast his vote.");

} else {

 System.out.println("Congratulation! the candidate is qualified to cast

his vote.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 85

Question:

Write a program to Convert Yard to Foot.

655

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float yard;

System.out.print("\nEnter the Length in Yard : ");

yard = STDIN_SCANNER.nextFloat();

System.out.printf("\n%f Yard in Foot is: %f", yard, 3 * yard);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 86

Question:

Write a program to convert gigabytes to megabytes.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

double gigabytes, megabytes;

System.out.print("\nInput the amount of gigabytes to convert: ");

gigabytes = STDIN_SCANNER.nextDouble();

656

megabytes = gigabytes * 1_024;

System.out.printf("\nThere are %f megabytes in %f gigabytes.", megabytes,

gigabytes);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 87

Question:

Write a program to Convert Kilogram to Pounds.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float kg, lbs;

System.out.print("\nEnter Weight in Kilogram: ");

kg = STDIN_SCANNER.nextFloat();

lbs = (float)(kg * 2.20462);

System.out.printf("\n%f Kg = %f Pounds", kg, lbs);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

657

Question 88

Question:

Write a program to Convert Kilogram to Ounce.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float kg, ounce;

System.out.print("\nEnter Weight in Kilogram: ");

kg = STDIN_SCANNER.nextFloat();

ounce = (float)(kg * 35.274);

System.out.printf("\n%f Kg = %f Ounce", kg, ounce);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 89

Question:

Write a program to Convert Pounds to Grams.

658

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

float pound, gram;

System.out.print("\nEnter Weight in Pounds: ");

pound = STDIN_SCANNER.nextFloat();

gram = (float)(pound * 453.592);

System.out.printf("\n%f Pound = %f Grams", pound, gram);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 90

Question:

Write a program to verify whether a triangle is valid or not using angles.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

659

int angle1, angle2, angle3, sum;

System.out.print("\nEnter the first angle of the triangle: ");

angle1 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second angle of the triangle: ");

angle2 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the third angle of the triangle: ");

angle3 = STDIN_SCANNER.nextInt();

sum = angle1 + angle2 + angle3;

if(sum == 180) {

 System.out.print("\nThe triangle is valid.");

} else {

 System.out.print("\nThe triangle is not valid.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 91

Question:

Write a program to add the digits of a two-digit number that is entered by the user.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

660

int x, y, sum = 0;

System.out.print("\nEnter a two-digit number: ");

x = STDIN_SCANNER.nextInt();

y = x;

while(y != 0) {

 sum = sum + y % 10;

 y = y / 10;

}

System.out.print("\nSum of digits of " + x + " is: " + sum);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 92

Question:

Write a program to verify if a character you entered is a vowel or a consonant.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.println("Enter a alphabet: ");

char ch = scanner.next().charAt(0);

661

if(ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u' ||

ch == 'A' || ch == 'E' || ch == 'I' || ch == 'O' || ch == 'U') {

System.out.println(ch + " is vowel");

}

else {

System.out.println(ch + " is consonant");

}

}

}

Question 93

Question:

Write a program to find factorial of a number.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int fact = 1, num;

System.out.print("\nEnter a number: ");

num = STDIN_SCANNER.nextInt();

for(int i = 1; i <= num; i++) {

 fact = fact * i;

import java.util.ArrayList;

public class MyClass {

public static void main(String[] args) {

ArrayList<String> x = new ArrayList<String>();

x.add("Apple");

x.add("Lemon");

x.add("Kiwi");

x.add("Mango");

System.out.println(x.size());

// Output: 4

}

}

662

}

System.out.print("\nFactorial of " + num + " is: " + fact);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 94

Question:

Write a program to print number of days in a month.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int[] x = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

int m;

System.out.print("\nEnter the month number: ");

m = STDIN_SCANNER.nextInt();

if(m > 12 || m < 1) {

 System.out.print("Invalid input");

} else if(m == 2) {

 System.out.print("\nNumber of days in month 2 is either 29 or 28");

} else {

 System.out.print("\nNumber of days in month " + m + " is " + x[m - 1]);

}

663

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 95

Question:

Write a program to concatenate multiple strings.

Solution:

public class MyClass {

public static void main(String[] args) {

String x = "Stephen";

String y = "-William";

String z = "-Hawking";

String c = x.concat(y).concat(z);

System.out.println(c);

}

}

Question 96

Question:

Write a program to find maximum between two numbers.

public class MyClass {

public static void main(String[] args) {

Integer x = 10065;

String y = x.toString();

System.out.println(y.length());

// Output: 5

}

}

664

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b;

System.out.println("Enter two numbers: ");

a = STDIN_SCANNER.nextInt();

b = STDIN_SCANNER.nextInt();

if(a > b) {

 System.out.print("\n" + a + " is a maximum number");

} else {

 System.out.print("\n" + b + " is a maximum number");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

public class MyClass {

public static void main(String args[]) {

double a = 15.143;

double b = 15.656;

System.out.println(Math.max(a, b));

}

}

665

Question 97

Question:

Write a program to compare two strings.

Solution:

public class MyClass {

public static void main(String[] args) {

String x = "Albert";

String y = "Albert";

if(x == y) {

 System.out.println("The 2 strings are equal.");

}

else {

 System.out.println("The 2 strings are not equal.");

}

}

}

public class MyClass {

public static void main(String[] args) {

String x = "Albert";

String y = "Albert";

if(x.equals(y)) {

 System.out.println("The 2 strings are equal.");

666

}

else {

 System.out.println("The 2 strings are not equal.");

}

}

}

Question 98

Question:

Write a program to convert the upper case string to lower case string.

Solution:

public class MyClass {

public static void main(String args[]) {

String x = new String("ALBERT EINSTEIN");

System.out.println(x.toLowerCase());

}

}

public class MyClass {

public static void main(String[] args) {

String a = "20";

int b = 30;

String c = a + b;

System.out.println(c); // Output: 2030

}

}

667

Question 99

Question:

Write a program to find the quotient and remainder of a entered dividend and divisor.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int dividend, divisor;

System.out.print("\nEnter dividend: ");

dividend = STDIN_SCANNER.nextInt();

System.out.print("\nEnter divisor: ");

divisor = STDIN_SCANNER.nextInt();

System.out.println("\nQuotient = " + (dividend / divisor));

System.out.print("\nRemainder = " + (dividend % divisor));

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 100

Question:

Write a program to determine the Size of int, float, double and char.

668

Solution:

public class MyClass {

public static void main (String[] args) {

System.out.println("Size of int is: " + (Integer.SIZE/8) + " bytes.");

System.out.println("Size of char is: " + (Character.SIZE/8) + " bytes.");

System.out.println("Size of float is: " + (Float.SIZE/8) + " bytes.");

System.out.println("Size of double is: " + (Double.SIZE/8) + " bytes.");

}

}

Question 101

Question:

Write a program to promt user for 4 times password check.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

String password = "123";

String inputPass;

Scanner input = new Scanner(System.in);

System.out.println("Enter Your Password: ");

669

inputPass = input.nextLine();

if (inputPass.equals(password)) {

System.out.println("Welcome User!");

}

else {

for(int i = 0; i < 3; i++) {

System.out.println("Enter Your Password:");

inputPass = input.nextLine();

}

System.out.println("Access Denied! Try again");

}

}

}

Question 102

Question:

Write a program to find absolute value of a number.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int num;

System.out.println("Input a positive or negative number: ");

670

num = STDIN_SCANNER.nextInt();

System.out.println("\nAbsolute value of |" + num + "| is " + Math.abs(num));

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

public class MyClass {

public static void main(String args[]) {

int x = 820;

int y = -985;

float z = -8.1f;

System.out.printf("Absolute Value of x: %d \n", Math.abs(x));

System.out.printf("Absolute Value of y: %d \n", Math.abs(y));

System.out.printf("Absolute Value of z: %f \n", Math.abs(z));

}

}

Question 103

Question:

Write a program that will accept a person's height in cm and classify the person based on

it.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

671

float ht;

System.out.print("\nEnter the height (in cm): ");

ht = STDIN_SCANNER.nextFloat();

if(ht < 150.0) {

 System.out.println("Dwarf.");

} else if(ht >= 150.0 && ht < 165.0) {

 System.out.println("Average Height.");

} else if(ht >= 165.0 && ht <= 195.0) {

 System.out.println("Taller.");

} else {

 System.out.println("Abnormal height.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 104

Question:

Write a program to calculate the area of different geometric shapes using switch

statements.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

672

int choice;

float r, l, w, b, h;

System.out.print("\nEnter 1 for area of circle: ");

System.out.print("\nEnter 2 for area of rectangle: ");

System.out.print("\nEnter 3 for area of triangle: ");

System.out.print("\nEnter your choice : ");

choice = STDIN_SCANNER.nextInt();

switch(choice) {

case 1:

System.out.print("Enter the radius of the circle: ");

r = STDIN_SCANNER.nextFloat();

System.out.printf("\nArea of a circle is: %f", 3.14 * r * r);

break;

case 2:

System.out.println("Enter the length and width of the rectangle: ");

l = STDIN_SCANNER.nextFloat();

w = STDIN_SCANNER.nextFloat();

System.out.printf("\nArea of a rectangle is: %f", l * w);

break;

case 3:

System.out.println("Enter the base and height of the triangle: ");

b = STDIN_SCANNER.nextFloat();

h = STDIN_SCANNER.nextFloat();

System.out.printf("\nArea of a triangle is: %f", 0.5 * b * h);

break;

default:

System.out.print("\nPlease enter a number from 1 to 3.");

break;

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

673

}

Question 105

Question:

Write a program to accept a character from the keyboard and print "Yes" if it is equal to y.

Otherwise print "No".

Solution:

public class MyClass {

public static void main(String[] args) throws Exception {

char ch;

System.out.println("Enter a character: ");

ch = (char)System.in.read();

if(ch == 'y' || ch == 'Y') {

System.out.println("Yes\n");

}

else {

System.out.println("No\n");

}

}

}

public class MyClass {

public static void main(String[] args) {

// return a random number between 0 and 1

System.out.println(Math.random());

}

}

674

Question 106

Question:

Write a program that uses bitwise operators to multiply an entered value by four.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

long x, y;

System.out.print("Enter a integer: ");

x = STDIN_SCANNER.nextLong();

y = x;

x = x << 2;

System.out.println(y + " x 4 = " + x);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 107

Question:

Write a program to check whether a number entered by the user is power of 2 or not.

675

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter a number: ");

x = STDIN_SCANNER.nextInt();

if(x != 0 && (x & x - 1) == 0) {

 System.out.print("\n" + x + " is a power of 2");

} else {

 System.out.print("\n" + x + " is not a power of 2");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 108

Question:

Write a program to determine whether a triangle is scalene, isosceles, or equilateral.

Solution:

import java.util.Scanner;

676

public class MyClass {

public static void main(String[] args) {

int side1, side2, side3;

System.out.print("\nEnter the first side of the triangle: ");

side1 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second side of the triangle: ");

side2 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the third side of the triangle: ");

side3 = STDIN_SCANNER.nextInt();

if(side1 == side2 && side2 == side3) {

 System.out.print("\nThe given Triangle is equilateral.");

} else if(side1 == side2 || side2 == side3 || side3 == side1) {

 System.out.print("\nThe given Triangle is isosceles.");

} else {

 System.out.print("\nThe given Triangle is scalene.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 109

Question:

Write a program to print ASCII values of all the letters of the English alphabet from A to Z.

677

Solution:

public class MyClass {

public static void main(String[] args) {

for(int i = 'A'; i <= 'Z'; i++) {

System.out.println("ASCII value of " + ((char)Byte.toUnsignedInt((byte)i)) +

" = " + i);

}

}

}

Question 110

Question:

Write a program to find sum of even numbers between 1 to n.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int num, sum = 0;

System.out.print("Enter a number: ");

num = STDIN_SCANNER.nextInt();

for(int i = 2; i <= num; i = i + 2) {

sum = sum + i;

}

678

System.out.print("\nSum of all even number between 1 to " + num + " is: " +

sum);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 111

Question:

Write a program to find sum of odd numbers between 1 to n.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int num, sum = 0;

System.out.print("Enter a number: ");

num = STDIN_SCANNER.nextInt();

for(int i = 1; i <= num; i = i + 2) {

 sum = sum + i;

}

System.out.print("\nSum of all odd number between 1 to " + num + " is: " +

sum);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

679

Question 112

Question:

Write a program that accepts an integer (x) and computes the value of x+xx+xxx.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

Scanner in = new Scanner(System.in);

System.out.print("Enter a number: ");

x = in .nextInt();

System.out.printf("%d + %d%d + %d%d%d\n", x, x, x, x, x, x);

}

}

Question 113

Question:

Write a program that allows you to enter the cost price and the selling price of a product

and calculate profit or loss.

680

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int cp, sp;

System.out.print("\nInput Cost Price: ");

cp = STDIN_SCANNER.nextInt();

System.out.print("\nInput Selling Price: ");

sp = STDIN_SCANNER.nextInt();

if(sp > cp) {

System.out.print("Profit = " + (sp - cp));

} else if(cp > sp) {

System.out.print("Loss = " + (cp - sp));

} else {

System.out.print("No Profit No Loss.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 114

Question:

Write a program that display the pattern like a right angle triangle using an asterisk.

681

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int rows;

System.out.print("Input the number of rows: ");

rows = STDIN_SCANNER.nextInt();

for(int x = 1; x <= rows; x++) {

for(int y = 1; y <= x; y++) {

System.out.print("*");

}

System.out.println();

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 115

Question:

Write a program that display the pattern like a right angle triangle using a number.

Solution:

682

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int rows;

System.out.print("Input the number of rows: ");

rows = STDIN_SCANNER.nextInt();

for(int x = 1; x <= rows; x++) {

for(int y = 1; y <= x; y++) {

System.out.print(y);

}

System.out.println();

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 116

Question:

Write a program to determine the number and sum of all integers between 50 and 100

which are divisible by 2.

Solution:

public class MyClass {

public static void main(String[] args) {

683

int sum = 0;

System.out.println("Numbers between 50 and 100, divisible by 2: ");

for(int x = 51; x < 100; x++) {

if(x % 2 == 0) {

 System.out.printf("%5d", x);

 sum += x;

}

}

System.out.print("\nThe sum: " + sum);

}

}

Question 117

Question:

Write a program that uses the function to determine whether an entered number is even

or odd.

Solution:

import java.util.Scanner;

public class MyClass {

public static int myfunc(int x) {

 return x & 1;

}

public static void main(String[] args) {

684

int x;

System.out.print("Enter any number: ");

x = STDIN_SCANNER.nextInt();

if(myfunc(x) != 0) {

 System.out.print("\nThe number you entered is odd.");

} else {

 System.out.print("\nThe number you entered is even.");

}

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 118

Question:

Write a program to find square root of a entered number.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x;

System.out.print("Enter any number: ");

x = STDIN_SCANNER.nextInt();

System.out.printf("Square root of %d is %.2f", x, Math.sqrt(x));

685

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 119

Question:

Write a program to find power of a entered number using library function.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

System.out.print("\n" + x + "^" + y + " = " + ((long)Math.pow(x, y)));

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

686

Question 120

Question:

Write a program to read 10 numbers from the keyboard and find their sum and average.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String [] args) {

int N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, sum;

float X;

Scanner scan = new Scanner(System.in);

System.out.println("Enter any ten Numbers: ");

N1 = scan.nextInt();

N2 = scan.nextInt();

N3 = scan.nextInt();

N4 = scan.nextInt();

N5 = scan.nextInt();

N6 = scan.nextInt();

N7 = scan.nextInt();

N8 = scan.nextInt();

N9 = scan.nextInt();

N10 = scan.nextInt();

sum = N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10;

X = sum /10;

System.out.println("The sum of 10 numbers = " + sum);

System.out.println("The average of 10 numbers = " + X);

}

}

687

Question 121

Question:

Write a program to determine whether the given character is an alphanumeric character

or not.

Solution:

public class MyClass {

public static void main(String[] args) {

String x="abc123", y="abc.com";

System.out.println(x.matches("[a-zA-Z0-9]+"));

System.out.println(y.matches("[a-zA-Z0-9]+"));

}

}

Question 122

Question:

Write a program to illustrate try-catch statement.

688

Solution:

public class MyClass {

public static void main(String[] args) {

try {

 int[] num = {1, 2, 3};

 System.out.println(num[3]);

 } catch (Exception e) {

 System.out.println("Something went wrong.");

}

}

}

Question 123

Question:

Write a program to remove all whitespaces from a given string.

Solution:

public class MyClass {

public static void main(String[] args) {

String x = "T his is b ett er.";

x = x.replaceAll("\\s", "");

System.out.println(x);

}

689

}

Question 124

Question:

Write a program to get current working directory.

Solution:

public class MyClass {

public static void main(String[] args) {

String path = System.getProperty("user.dir");

System.out.println("Current Working Directory: " + path);

}

}

Question 125

Question:

Write a program to split a sentence into words.

Solution:

690

public class MyClass {

public static void main(String[] args) {

String x = "Hai this is Alan";

String [] y = x. split(" ", 3);

for(String i : y)

System. out. println(i);

}

}

Question 126

Question:

Write a program to replace all occurrences of 'a' to 'e' in a string.

Solution:

public class MyClass {

public static void main(String args[]){

String x="Java is a powerful general-purpose programming language.";

String replaceString=x.replace('a','e');

System.out.println(replaceString);

}

}

691

Question 127

Question:

Write a program to check if the given string is empty or not.

Solution:

public class MyClass {

public static void main(String[] args) {

String a="";

String b="Java";

System.out.println(a.isEmpty());

System.out.println(b.isEmpty());

}

}

Question 128

Question:

Write a program to illustrate .join() method.

Solution:

public class MyClass {

public static void main(String[] args) {

692

String a=String.join("-","Java","Programming");

System.out.println(a);

}

}

Question 129

Question:

Write a program to calculate surface area of cube.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int side;

long area;

System.out.print("\nEnter the side of cube: ");

side = STDIN_SCANNER.nextInt();

area = 6 * side * side;

System.out.print("\nThe surface area of cube is: " + area);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

693

Question 130

Question:

Write a program to subtract 2 numbers without using subtraction operator.

Solution:

public class MyClass {

public static void main(String[] args) {

int x = 6, y = 3;

System.out.print(x + ~y + 1);

}

}

Question 131

Question:

Write a program to add 2 numbers without using addition operator.

Solution:

public class MyClass {

public static void main(String[] args) {

int x = 6, y = 3;

System.out.print(x - ~y - 1);

694

}

}

Question 132

Question:

Write a program to multiply a number by 2 without using multiplication operator.

Solution:

public class MyClass {

public static void main(String[] args) {

int x = 2;

System.out.print(x << 1);

}

}

Question 134

Question:

Write a program to divide a number by 2 without using division operator.

Solution:

695

public class MyClass {

public static void main(String[] args) {

int x = 12;

System.out.print(x >> 1);

}

}

Question 135

Question:

Write a program to calculate volume of sphere.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int radius;

float PI = 3.141592f;

System.out.print("\nEnter the radius of sphere: ");

radius = STDIN_SCANNER.nextInt();

float volume = (4 / 3) * (PI * radius * radius * radius);

System.out.printf("\nThe volume of sphere is: %f", volume);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

public class MyClass {

public static void main(String[] args) {

String x = "Albert";

String y = "ALBERT";

System.out.println(x.equalsIgnoreCase(y))

;

// Output: true

}

}

696

Question 136

Question:

Write a program to calculate volume of ellipsoid.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int r1, r2, r3;

float PI = 3.141592f;

System.out.print("\nEnter the radius of the ellipsoid of axis 1: ");

r1 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the radius of the ellipsoid of axis 2: ");

r2 = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the radius of the ellipsoid of axis 3: ");

r3 = STDIN_SCANNER.nextInt();

float volume = (4 / 3) * (PI * r1 * r2 * r3);

System.out.printf("\nThe volume of ellipsoid is: %f", volume);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

697

Question 137

Question:

Write a program that uses a for loop to determine power of a number entered by the

user.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int x, y;

long power = 1;

System.out.print("\nEnter the value for x: ");

x = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the value for y: ");

y = STDIN_SCANNER.nextInt();

for(int i = 1; i <= y; i++) {

 power = power * x;

}

System.out.print(x + " ^ " + y + " = " + power);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

698

Question 138

Question:

Write a program to read three numbers and find average of numbers.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int a, b, c;

float avg;

System.out.print("\nEnter the first number: ");

a = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the second number: ");

b = STDIN_SCANNER.nextInt();

System.out.print("\nEnter the third number: ");

c = STDIN_SCANNER.nextInt();

System.out.printf("\nAverage of three numbers is: %f", avg);

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

avg = (float)((a + b + c) / 3.0);

699

Question 139

Question:

Write a program to read integer "n" and print first three powers (n1, n2, n3).

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

int n;

System.out.print("\nEnter a number: ");

n = STDIN_SCANNER.nextInt();

System.out.printf("%f, %f, %f", Math.pow(n, 1), Math.pow(n, 2), Math.pow(n,

3));

}

public final static Scanner STDIN_SCANNER = new Scanner(System.in);

}

Question 140

Question:

Write a program to search the substring in a given string.

700

Solution:

public class MyClass {

public static void main(String[] args) {

String name="Java is a powerful general-purpose programming language";

System.out.println(name.contains("Java"));

System.out.println(name.contains("programming"));

System.out.println(name.contains("language"));

}

}

Question 141

Question:

Write a program to check if the string ends with a given suffix.

Solution:

public class MyClass {

public static void main(String[] args) {

String a="Java Programming";

System.out.println(a.endsWith("g"));

}

}

701

Question 142

Question:

Write a program to check if the string starts with the given prefix.

Solution:

public class MyClass {

public static void main(String[] args) {

String a="Java Programming";

System.out.println(a.startsWith("j"));

System.out.println(a.startsWith("J"));

}

}

Question 143

Question:

Write a program to check whether a character is alphabet, digit or special character.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

702

char ch;

Scanner x=new Scanner(System.in);

System.out.print("Enter a character: ");

ch=x.next().charAt(0);

if((ch>='a'&&ch<='z')||(ch>='A'&&ch<='Z')) {

System.out.println(ch+" is Alphabet.");

}

else if(ch>='0'&&ch<='9') {

System.out.println(ch+" is Digit.");

}

else {

System.out.println(ch+" is Special Character.");

}

}

}

Question 144

Question:

Write a program to Check whether Java is installed on your computer.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.println("\nJava Version: "+System.getProperty("java.version"));

System.out.println("Java Runtime Version:

"+System.getProperty("java.runtime.version"));

703

System.out.println("Java Home: "+System.getProperty("java.home"));

System.out.println("Java Vendor: "+System.getProperty("java.vendor"));

System.out.println("Java Vendor URL:

"+System.getProperty("java.vendor.url"));

System.out.println("Java Class Path:

"+System.getProperty("java.class.path")+"\n");

}

}

Question 145

Question:

Write a program to Check whether Java is installed on your computer.

Solution:

public class MyClass {

public static void main(String[] args) {

System.out.println("\nJava Version: "+System.getProperty("java.version"));

System.out.println("Java Runtime Version:

"+System.getProperty("java.runtime.version"));

System.out.println("Java Home: "+System.getProperty("java.home"));

System.out.println("Java Vendor: "+System.getProperty("java.vendor"));

System.out.println("Java Vendor URL:

"+System.getProperty("java.vendor.url"));

System.out.println("Java Class Path:

"+System.getProperty("java.class.path")+"\n");

}

704

}

Question 146

Question:

Write a program to get the current system environment and system properties.

Solution:

import java.lang.*;

public class Main {

public static void main(String[] args) {

System.out.println("\nCurrent system environment:");

System.out.println(System.getenv());

System.out.println("\n\nCurrent system properties:");

System.out.println(System.getProperties());

}

}

Question 147

Question:

Write a program to measure how long code takes to execute in nanoseconds.

705

Solution:

import java.lang.*;

public class Main {

public static void main(String[] args) {

long startTime = System.nanoTime();

int i;

System.out.println ("The first 5 natural numbers are:\n");

for (i=1;i<=5;i++) {

 System.out.println(i);

}

long estimatedTime = System.nanoTime() - startTime;

System.out.println("Estimated time (in nanoseconds) to get the first 5

natural numbers: "+estimatedTime);

}

}

Question 148

Question:

Write a program to replace the spaces of a string with a specific character.

Solution:

public class MyClass {

public static void main(String[] args) {

String a = "Java Programming";

char ch = '-';

706

a = a.replace(' ', ch);

System.out.println("String after replacing spaces with the character '-': ");

System.out.println(a);

}

}

Question 149

Question:

Write a program to count the total number of punctuations in a given string.

Solution:

public class Main {

public static void main (String args[]) {

int count = 0;

String str = "Logic will get you from A to Z; imagination will get you

everywhere.";

for(int i = 0; i < str.length(); i++) {

if(str.charAt(i) == '!' || str.charAt(i) == ',' || str.charAt(i) == ';'

|| str.charAt(i) == '.' || str.charAt(i) == '?' || str.charAt(i) == '-'

|| str.charAt(i) == '\'' || str.charAt(i) == '\"' || str.charAt(i) == ':') {

count++;

}

}

System.out.println("The total number of punctuations in a given string is: "

+count);

}

707

}

Question 150

Question:

Write a program to convert Decimal to Hexadecimal.

Solution:

public class MyClass {

public static void main(String args[]){

System.out.println(Integer.toHexString(10));

System.out.println(Integer.toHexString(15));

System.out.println(Integer.toHexString(289));

}

}

Question 151

Question:

Write a program to convert Decimal to Octal.

Solution:

708

public class MyClass {

public static void main(String args[]){

System.out.println(Integer.toOctalString(8));

System.out.println(Integer.toOctalString(19));

System.out.println(Integer.toOctalString(81));

}

}

Question 152

Question:

Write a program to convert Decimal to Binary.

Solution:

public class MyClass {

public static void main(String args[]){

System.out.println(Integer.toBinaryString(10));

System.out.println(Integer.toBinaryString(21));

System.out.println(Integer.toBinaryString(31));

}

}

709

Question 153

Question:

Write a program to convert Binary to Decimal.

Solution:

public class MyClass {

public static void main(String args[]){

String a="1010";

int decimal=Integer.parseInt(a,2);

System.out.println(decimal);

}

}

Question 154

Question:

Write a program to convert Hexadecimal to Decimal.

Solution:

public class MyClass {

int x = 15;

public static void main(String[] args) {

Main myfunc = new Main();

System.out.println(myfunc.x);

// Output: 15

}

}

710

public class MyClass {

public static void main(String args[]){

String hex="a";

int decimal=Integer.parseInt(hex,16);

System.out.println(decimal);

}

}

Question 155

Question:

Write a program to determine whether one string is a rotation of another.

Solution:

public class MyClass {

public static void main(String[] args) {

String x = "abcde", y = "deabc";

if(x.length() != y.length()){

 System.out.println("Second string is not a rotation of first string");

}

else {

 x = x.concat(x);

 if(x.indexOf(y) != -1)

711

 System.out.println("Second string is a rotation of first

string");

 else

 System.out.println("Second string is not a rotation of first

string");

}

}

}

Question 156

Question:

Write a program to illustrate the isNaN method.

Solution:

public class MyClass {

public static void main(String args[]) {

/* The isNaN method returns true if the value is NaN. */

Float a = Float.NaN;

Float b = 6.0f;

System.out.println(a +" - " + a.isNaN());

System.out.println(a +" - " + Float.isNaN(a));

System.out.println(b +" - " + Float.isNaN(b));

}

712

}

Question 157

Question:

Write a program to illustrate the isNaN method.

Solution:

public class MyClass {

public static void main(String args[]) {

/* The isNaN method returns true if the value is NaN. */

Float a = Float.NaN;

Float b = 6.0f;

System.out.println(a +" - " + a.isNaN());

System.out.println(a +" - " + Float.isNaN(a));

System.out.println(b +" - " + Float.isNaN(b));

}

}

public class MyClass {

public static void main(String[] args) {

String[] x = {"Apple", "Orange", "Kiwi", "Lemon"};

for (String i : x) {

System.out.println(i);

}

}

}
?

713

Question 158

Question:

Write a program to Design Simple Calculator.

Solution:

import java.util.Scanner;

public class MyClass {

public static void main(String[] args) {

char operator;

Double number1, number2, result;

Scanner input = new Scanner(System.in);

System.out.println("Choose an operator: +, -, *, or /");

operator = input.next().charAt(0);

System.out.println("Enter first number:");

number1 = input.nextDouble();

System.out.println("Enter second number:");

number2 = input.nextDouble();

switch (operator) {

 case '+':

 result = number1 + number2;

 System.out.println(number1 + " + " + number2 + " = " + result);

714

 break;

 case '-':

 result = number1 - number2;

 System.out.println(number1 + " - " + number2 + " = " + result);

 break;

 case '*':

 result = number1 * number2;

 System.out.println(number1 + " * " + number2 + " = " + result);

 break;

 case '/':

 result = number1 / number2;

 System.out.println(number1 + " / " + number2 + " = " + result);

 break;

 default:

 System.out.println("Invalid operator!");

 break;

 }

 input.close();

 }

}

public class MyClass {

public static void main(String[] args) {

int[][] x = { {11, 12, 13, 14}, {15, 16, 17}};

System.out.println(x[1][2]); // Output: 17

}

}

715

Question 159

Question:

Write a program to print Invert Triangle.

Solution:

public class MyClass {

public static void main(String args[]) {

int x = 9;

while(x > 0) {

 for(int i=1; i<=x; i++) {

 System.out.print(" "+x+" ");

 }

System.out.print("\n");

x--;

}

}

}

public class MyClass {

public static void main(String[] args) {

String[] x = {"Albert", "John", "James", "Mary"};

x[0] = "Elsa";

System.out.println(x[0]); // Output: Elsa

}

}

716

public class MyClass {

public static void main (String [] args) {

String x = "Einstein";

System.out.println(x.charAt(1));

// Output: i

}

}

public class MyClass {

public static void main (String [] args){

String x = " Albert ";

System.out.println(x);

System.out.println(x.trim());

}

}

Output:

 Albert

Albert

public class MyClass {

public static void main (String [] args){

double x =56.698;

double y =-56.898;

double z =56.45;

System.out.println(Math.round(x)); // Output: 57

System.out.println(Math.round(y)); // Output: -57

System.out.println(Math.round(z)); // Output: 56

}

}

717

718

public class MyClass {

public static void main (String [] args){

String x = "Most Important Programming Concepts";

System.out.println(x.substring(15));

// Output: Programming Concepts

System.out.println(x.substring(26));

// Output: Concepts

System.out.println(x.substring(15, 26));

// Output: Programming

System.out.println(x.substring(0, 5));

// Output: Most

}

}

Parallel computing refers to the use of multiple
processors or computing systems to solve a single
problem or perform a task. In parallel computing, a
single task is divided into multiple smaller tasks, each of
which is executed simultaneously on multiple processors
or computing systems.

The main goal of parallel computing is to improve the
speed and efficiency of computing systems by dividing a
large problem into smaller subproblems and processing
them simultaneously. Parallel computing is used in a
wide range of applications, including scientific
computing, data analysis, machine learning, image and
signal processing, and more.

Parallel computing can be classified into two
categories: shared memory and distributed memory. In
shared memory systems, multiple processors share a
single memory space and can access the same data
directly. In distributed memory systems, each processor
has its own local memory, and communication between
processors is done via message passing.

Parallel computing is becoming increasingly important
as the demand for faster and more efficient computing
systems continues to grow. It requires specialized
hardware and software, as well as expertise in
programming and algorithm design. Parallel computing
is an important area of study for computer scientists,
engineers, and researchers who are involved in
designing and developing high-performance computing
systems.

public class MyClass {

public static void main(String args[]) {

Integer i = new Integer(10);

int a = i;

System.out.println(a);

}

}

public class MyClass {

public static void main(String args[]) {

StringBuffer buffer=new StringBuffer("Java");

buffer.append(" Programming");

System.out.println(buffer);

}

}

Output:

10

Output:

Java Programming

Overloading provides

 code clarity

 reduce complexity

 increases runtime presentation of a code

719

Function overloading Operator overloading

using a single name and giving

more functionality to it

adding extra functionality

for a certain operator

public class MyClass {

public static void main(String args[]) {

StringBuilder builder=new StringBuilder("Java");

builder.append(" Programming");

System.out.println(builder);

}

}

Output:

Java Programming

720

Python Exercises

Python is a well-known general-purpose, interactive, object-oriented, and high-level

programming language. Python is a dynamically typed, garbage-collected programming

language. Between 1985 and 1990, Guido van Rossum developed it. Python is a

wonderful introductory language since its code is clear and simple to read. Python is

capable of doing everything you ask of it. Python is the language for you if you're into

data research, machine learning, or web development. This chapter includes Python

programming language learning problems and solutions. Exercises are an excellent

approach to learn the Python programming language since you learn programming best

by doing. Python is a very well-liked programming language that enables you to create

anything from robotics to web applications.

721

Question 1

Question:

Write a program to add two numbers.

Solution:

a = 1

b = 2

c= a+b

print(c)

a = int(input("Enter a number: "))

b = int(input("Enter a number: "))

c= a+b

print(c)

Question 2

Question:

Write a program to find whether a given number (accept from the user) is even or odd,

print out an appropriate message to the user.

import numpy as np

x= np.ones([2,4])

print(x)

print(x.dtype)

print(x.shape)

Output:

[[1. 1. 1. 1.]

[1. 1. 1. 1.]]

float64

(2, 4)

722

Solution:

a = int(input("Enter a number: "))

if a % 2 == 0:

 print("This is an even number.")

else:

 print("This is an odd number.")

Question 3

Question:

Write a program to check whether a number entered by the user is positive, negative or

zero.

Solution:

a = int(input("Enter a number: "))

if a > 0:

 print("Positive number")

elif a == 0:

 print("Zero")

else:

 print("Negative number")

for i in "albert":

 print(i)
Output:

a

l

b

e

r

t

import sys

print("Albert (Einstein)")

Output: Albert (Einstein)

print("Elsa (Einstein)", file=sys.stderr)

Output: Elsa (Einstein)

sys.stderr.write("David Einstein")

Output: David Einstein

723

Question 4

Question:

Write a program to display the calendar of a given date.

Solution:

import calendar

yy = int(input("Enter year: "))

mm = int(input("Enter month: "))

print(calendar.month(yy, mm))

Question 5

Question:

Write a program to ask the user to enter the string and print that string as output of the

program.

Solution:

x= input("Enter string: ")

print("You entered:", x)

names = ["Albert", "Paul", "John"]

names[0] = "David"

print(names)

Output: ['David', 'Paul', 'John']

x = ("ball", "bag", "bat")

y = iter(x)

print(next(y))

print(next(y))

print(next(y))

Output:

ball

bag

bat

724

Question 6

Question:

Write a program to concatenate two strings.

Solution:

x = input("Enter first string to concatenate: ")

y = input("Enter second string to concatenate: ")

z = x + y

print("String after concatenation = ", z)

Question 7

Question:

Write a program to check if an item exists in the list.

Solution:

x = ["ball", "book", "pencil"]

i = input("Type item to check: ")

if i in x:

 print("Item exists in the list.")

else:

 print("Item does not exist in the list.")

x = abs(-9.78)

print(x)

Output: 9.78

725

Question 8

Question:

Write a program to join two or more lists.

Solution:

x = ["This" , "is", "a", "blood", "sample"]

y = [20, 6, 55, 3, 9, 7, 18, 20]

z = x + y

print(z)

Question 9

Question:

Write a program to calculate cube of a number.

Solution:

import math

x = int(input("Enter a number: "))

y=math.pow(x,3)

print(y)

x = min(15, 100, 215)

y = max(15, 100, 215)

print(x)

Output: 15

print(y)

Output: 215

726

Question 10

Question:

Write a program to calculate square root of a number.

Solution:

import math

x = int(input("Enter a number: "))

y=math.sqrt(x)

print(y)

Question 11

Question:

Write a program that takes a list of numbers (for example, i = [6, 10, 75, 60, 55]) and

makes a new list of only the first and last elements of the given list.

Solution:

i = [6, 10, 75, 60, 55]

print([i[0], i[4]])

import math

x = math.ceil(6.8)

y = math.floor(6.8)

print(x) # Output: 7

print(y) # Output: 6

727

Question 12

Question:

Take a list, say for example this one: x = [1, 1, 2, 3, 2, 8, 18, 31, 14, 25, 78] and write a

program that prints out all the elements of the list that are less than 4.

Solution:

x = [1, 1, 2, 3, 2, 8, 18, 31, 14, 25, 78]

for i in x:

 if i < 4:

 print(i)

Question 13

Question:

Let's say I give you a list saved in a variable: x = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]. Write

one line of Python that takes this list 'x' and makes a new list that has only the even

elements of this list in it.

Solution:

x = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

x = "alan"

y = iter(x)

print(next(y))

print(next(y))

print(next(y))

print(next(y))

Output:

a

l

a

n

728

y = [i for i in a if i % 2 == 0]

print(y)

Question 14

Question:

Ask the user for a string and print out whether this string is a palindrome or not (A

palindrome is a string that reads the same forwards and backwards).

Solution:

x=input("Please enter a word: ")

z = x.casefold()

y = reversed(z)

if list(z) == list(y):

 print("It is palindrome")

else:

 print("It is not palindrome")

Question 15

Question:

Take two lists, say for example these two: x = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] y = [1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and write a program that returns a list that contains only

import math

x = math.pi

print(x)

Output: 3.141592653589793

729

the elements that are common between the lists (without duplicates). Make sure your

program works on two lists of different sizes.

Solution:

x = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

print([i for i in set(x) if i in y])

Question 16

Question:

Write a program to add a string to text file.

Solution:

file = open("testfile.txt","w")

file.write("Albert Einstein")

file.write("Elsa Einstein")

file.write("David Einstein.")

file.write("Why E=mc squared?.")

file.close()

x = ["albert", "john", "david"]

for i in x:

 print(i)

 if i == "john":

 break

Output:

albert

john

730

Question 17

Question:

Write a program to read a file and display its contents on console.

Solution:

with open('testfile.txt') as f:

 i = f.readline()

 while i:

 print(i)

 line = f.readline()

Question 18

Question:

Take two sets, say for example these two: x = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89} y = {1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} and write a program that returns a set that contains only

the elements that are common between the sets.

Solution:

x = {1, 1, 2, 2, 3, 5, 8, 13, 21, 34, 55, 89}

y = {1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

print(set(x) & set(y))

import re

str = "Stephen William Hawking"

x = re.split("\s", str)

print(x)

Output: ['Stephen', 'William', 'Hawking']

A program to split the string

at every white-space character

731

Question 19

Question:

Write a program to split the characters of the given string into a list.

Solution:

x= "albert"

y = list(x)

print(y)

Question 20

Question:

Create a program that asks the user for a number and then prints out a list of all the

divisors of that number.

Solution:

x=int(input("Enter an integer: "))

print("The divisors of the number are: ")

for i in range(1,x+1):

 if(x%i==0):

import re

str = "Stephen William Hawking"

x = re.sub("\s", "+", str)

print(x)

Output: Stephen+William+Hawking

A program to replace all white-space

characters with the symbol "+"

732

 print(i)

Question 21

Question:

Write a program to Find the largest of three numbers.

Solution:

x = int(input("Enter first number: "))

y = int(input("Enter second number: "))

z = int(input("Enter third number: "))

if (x > y) and (x > z):

 largest = x

elif (y > x) and (y > z):

 largest = y

else:

 largest = z

print("The largest number is", largest)

Question 22

Question:

Write a program to find absolute value of a number.

import re

str = "Albert Einstein"

x = re.findall("in", str)

print(x)

Output: ['in', 'in']

A program to return a list containing

every occurrence of "in"

733

Solution:

x = int(input("Enter a number: "))

if x >= 0:

 print(x)

else:

 print(-x)

Question 23

Question:

Write a program to find the length of a string.

Solution:

print("Enter 'y' for exit.")

i = input("Enter a string: ")

if i == 'y':

 exit()

else:

 print("Length of the string is: ", len(i))

import re

str = "The boy is the sports secretary"

x = re.search("^The.*secretary$", str)

if x:

print("YES! We've got a match!")

else:

print("No match")

Output: YES! We've got a match!

A program to check if the string starts

with "The" and ends with "secretary"

734

Question 24

Question:

Write a program to print natural numbers from 1 to x.

Solution:

x = int(input("Please Enter any Number: "))

for i in range(1, x+1):

 print(i)

Question 25

Question:

Write a program to calculate the sum and average of natural numbers from 1 to x.

Solution:

x = int(input("Please Enter any Number: "))

sum = 0

for i in range(1,x+1):

 sum = sum + i

print(sum)

average = sum / x

print(average)

import camelcase

c = camelcase.CamelCase()

str = "albert einstein"

print(c.hump(str))

Output: Albert Einstein

A program to capitalize

the first letter of each

word in the string

x = [(2,6),(4,7),(5,9),(8,4),(2,1)]

x.sort()

print(x)

Output: [(2, 1), (2, 6), (4, 7), (5, 9), (8, 4)]

735

Question 26

Question:

Write a program to print a statement any number of times.

Solution:

x = int(input("Please Enter any Number: "))

for i in range(x):

 print("Albert Einstein")

Question 27

Question:

Write a program to multiply two numbers using Function.

Solution:

def myfunc():

 x = int(input("Enter a number: "))

 y=int(input("Enter a number: "))

 z= x*y

 return z

print(type(True))

Output: <class 'bool'>

print(type(False))

Output: <class 'bool'>

print(type([1,2]))

Output: <class 'list'>

print(type({1,2}))

Output: <class 'set'>

736

i = myfunc()

print(i)

Question 28

Question:

Write a program to add an item to the end of the list.

Solution:

x = ["pen", "book", "ball"]

x.append("bat")

print(x)

Question 29

Question:

Write a program to remove an item from the list.

Solution:

x = ["pen", "book", "ball"]

x.remove("ball")

x = "23"

y = "54"

z = x + y

print(z)

Output: 2354

x = 6

y = 2

print(x+y)

Output: 8

print(x-y)

Output: 4

print(x*y)

Output: 12

print(x/y)

Output: 3.0

737

print(x)

Question 30

Question:

Write a program to print the number of elements in an array.

Solution:

x = ["pen", "book", "ball"]

y = len(x)

print(y)

Question 31

Question:

Write a program to calculate the variance and standard deviation of the elements of the

list.

Solution:

import numpy as np

x= [2,6,8,12,18,24,28,32]

import sys

sys.stdout.write("Albert ")

sys.stdout.write("Einstein")

Output: Albert Einstein

738

Write a program to get the difference between the two lists.

Solution:

x = [4, 5, 6, 7]

y = [4, 5]

print(list(set(x) - set(y)))

Question 33

Question:

Write a program to select an item randomly from a list.

Solution:

739

variance= np.var(x)

std = np.std(x)

print(variance)

print(std)

def main():

print("Albert Einstein")

if name == "__main__":

main()

Question 32

Question:
Output: Albert Einstein

Concurrency in computer science refers to the ability
of a computer system to execute multiple tasks or
processes simultaneously, without affecting the overall
performance of the system. In concurrent computing,
tasks are executed independently, and their execution
may overlap in time. This enables the computer
system to make more efficient use of its resources and
improve overall performance.

Concurrency can be implemented using threads,
which are lightweight processes that share the same
memory space and execute independently. Multiple
threads can be executed simultaneously on multiple
processors or cores, enabling the system to perform
multiple tasks in parallel.

Concurrency is used in a wide range of applications,
including web servers, database systems, operating
systems, and more. In web servers, concurrency
enables the server to handle multiple requests
simultaneously, improving the responsiveness and
throughput of the system. In database systems,
concurrency enables multiple users to access and
modify the same database simultaneously, without
conflicts or data corruption.

Concurrency can also introduce new challenges, such
as race conditions and deadlocks, which can affect the
correctness and reliability of the system. Ensuring
correct and safe concurrent execution requires
specialized techniques, such as synchronization,
locking, and atomic operations, which must be
carefully designed and implemented. Concurrency is
an important area of study in computer science, and it
is essential for the development of high-performance
and scalable software systems.

import random

x = ['Paper', 'Pencil', 'Book', 'Bag', 'Pen']

print(random.choice(x))

Question 34

Question:

Write a program that prints all the numbers from 0 to 6 except 2 and 6.

Solution:

for x in range(6):

 if (x == 2 or x==6):

 continue

 print(x)

Question 35

Question:

Write a program that takes input from the user and displays that input back in upper and

lower cases.

Solution:

def main():

 print("William")

print("Stephen")

main()

print("Hawking") # Output:

Stephen

William

Hawking

740

x = input("What is your name? ")

print(x.upper())

print(x.lower())

Question 36

Question:

Write a program to check whether a string starts with specified characters.

Solution:

x = "science.com"

print(x.startswith("phy"))

Question 37

Question:

Write a program to create the multiplication table (from 1 to 10) of a number.

Solution:

x = int(input("Enter a number: "))

for i in range(1,11):

print("Albert ", end="")

print("Einstein")

Output: Albert Einstein

print("Albert ", sep="")

print("Einstein")

Output:

Albert

Einstein

741

 print(x,'x',i,'=',x*i)

Question 38

Question:

Write a program to check a triangle is equilateral, isosceles or scalene.

Solution:

print("Enter lengths of the triangle sides: ")

x = int(input("x: "))

y = int(input("y: "))

z = int(input("z: "))

if x == y == z:

 print("Equilateral triangle")

elif x==y or y==z or z==x:

 print("isosceles triangle")

else:

 print("Scalene triangle")

Question 39

Question:

Write a program to sum of two given integers. However, if the sum is between 15 to 20 it

will return 20.

def main():

 x = input('First number: ')

 y = input('Second number: ')

 print(x + y)

main()

?

742

Solution:

x = int(input("Enter a number: "))

y = int(input("Enter a number: "))

z= x+y

if z in range(15, 20):

 print (20)

else:

 print(z)

Question 40

Question:

Write a program to convert degree to radian.

Solution:

pi=22/7

degree = int(input("Input degrees: "))

radian = degree*(pi/180)

print(radian)

x = ["albert", "john", "david"]

for i in x:

 if i == "john":

 continue

 print(i)

Output:

albert

david

def main():

 a = 2.5

 b = 2.9

 print(int(a) + int(b))

main()

Output: 4

743

Question 41

Question:

Write a program to generate a random number.

Solution:

import random

print(random.randint(0,9))

Question 42

Question:

Write a program to find the semi-perimeter of triangle.

Solution:

x = int(input('Enter first side: '))

y = int(input('Enter second side: '))

z = int(input('Enter third side: '))

s = (x + y + z) / 2

print(s)

def main():

 a = 2.5

 b = 2.9

 print(float(a) + float(b))

main()

Output: 5.4

744

Question 43

Question:

Given a list of numbers, iterate it and print only those numbers which are divisible of 2.

Solution:

x = [10, 20, 33, 46, 55]

for i in x:

 if (i % 2 == 0):

 print(i)

Question 44

Question:

Write a program to multiply all numbers in the list.

Solution:

import numpy

x = [1, 2, 3]

y = numpy.prod(x)

print(y)

x = '2'

print(x)

Output: 2

print(x.isdecimal())

Output: True

print(x.isnumeric())

Output: True

if x.isdecimal():

 y = int(x)

 print(y)

 # Output: 2

745

Question 45

Question:

Write a program to print ASCII Value of a character.

Solution:

x = 'j'

print("The ASCII value of '" + x + "' is", ord(x))

Question 46

Question:

Write a program to print "#" without a newline or space.

Solution:

for x in range(0, 5):

 print('#', end="")

print("\n")

x = "56"

print(type(x))

Output: <class 'str'>

y = int(x)

print(type(y))

Output: <class 'int'>

A program to convert

'string' to 'int'

x = 56.39

print(type(x))

Output: <class 'float'>

y = int(x)

print(type(y))

Output: <class 'int'>

A program to convert

'float' to 'int'

746

Question 47

Question:

Write a program that will convert a string to a float or an integer.

Solution:

x = "546.11235"

print(float(x))

print(int(float(x)))

Question 48

Question:

Write a program to add and search data in the dictionary.

Solution:

Define a dictionary

customers = {'1':'Mehzabin Afroze','2':'Md. Ali',

'3':'Mosarof Ahmed','4':'Mila Hasan', '5':'Yaqub Ali'}

Append a new data

customers['6'] = 'Mehboba Ferdous'

print(int(float(5.6)))

Output: 5

print(int(float("5")))

Output: 5

print(int(float(5)))

Output: 5

747

print("The customer names are:")

Print the values of the dictionary

for customer in customers:

 print(customers[customer])

Take customer ID as input to search

name = input("Enter customer ID:")

Search the ID in the dictionary

for customer in customers:

 if customer == name:

 print(customers[customer])

 break

Question 49

Question:

Write a program to obtain the details of the math module.

Solution:

import math

print(dir(math))

def main():

 x = input('First number: ')

 y = input('Second number: ')

 if int(y) == 0:

 print("Cannot divide by 0")

 else:

 print("Dividing", x, "by", y)

 print(int(x) / int(y))

main()

?

748

Question 50

Question:

Write a program to demonstrate throw and catch exception.

Solution:

Try block

try:

 # Take a number

 x = int(input("Enter a number: "))

 if x % 2 == 0:

 print("Number is even")

 else:

 print("Number is odd")

Exception block

except (ValueError):

 # Print error message

 print("Enter a numeric value")

import array

x = array.array('i', [11,13,15,17,19])

for i in x:

 print(i)

Output:

11

13

15

17

19

import random

names = ["Albert", "John", "Mary", "Alan"]

pick and print one of the names

print(random.choice(names))

Output: Albert

749

Question 51

Question:

Write a program to illustrate password authentication.

Solution:

import getpass module

import getpass

Take password from the user

passwd = getpass.getpass('Password:')

Check the password

if passwd == "albert":

 print("You are authenticated")

else:

 print("You are not authenticated")

Question 52

Question:

Write a program to calculate the average of numbers in a given list.

a = 4

b = 2

print(a ** b) # is the same as a ^ b

Output: 16

print(a % b)

a is divided by b that returns 0 as the remainder

Output: 0

a += 2 # is the same as a = a + 2

print(a)

Output: 6

b -= 1 # is the same as b = b - 1

print(b)

Output: 1

750

Solution:

x=int(input("Enter the number of elements to be inserted: "))

y=[]

for i in range(0,x):

 n=int(input("Enter element: "))

 y.append(n)

avg=sum(y)/x

print("Average of elements in the list: ",round(avg,2))

Question 53

Question:

Write a program that sorts three integers without the need of loops or conditional

statements.

Solution:

a = int(input("Enter the first number: "))

b = int(input("Enter the second number: "))

c = int(input("Enter the third number: "))

x = min(a, b, c)

z = max(a, b, c)

y = (a + b + c) - x - z

print("Numbers in sorted order: ", x, y, z)

import random

x = "123456789"

pick and print one of the numbers

print(random.choice(x))

Output: 3

751

Question 54

Question:

Write a program to determine the sum of digits of a number.

Solution:

num = int(input("Enter a four digit number: "))

x = num //1000

y = (num - x*1000)//100

z = (num - x*1000 - y*100)//10

c = num - x*1000 - y*100 - z*10

print("The number's digits add up to: ", x+y+z+c)

Question 55

Question:

Write a program to take in the marks of 5 subjects and display the grade.

import random

print(1 + int(3 * random.random()))

print(random.randrange(1, 3)) ?

752

Solution:

sub1=int(input("Enter marks of the first subject: "))

sub2=int(input("Enter marks of the second subject: "))

sub3=int(input("Enter marks of the third subject: "))

sub4=int(input("Enter marks of the fourth subject: "))

sub5=int(input("Enter marks of the fifth subject: "))

avg=(sub1+sub2+sub3+sub4+sub4)/5

if(avg>=90):

 print("Grade: A")

elif(avg>=80 and avg<90):

 print("Grade: B")

elif(avg>=70 and avg<80):

 print("Grade: C")

elif(avg>=60 and avg<70):

 print("Grade: D")

else:

 print("Grade: F")

Question 56

Question:

Write a program to print all numbers in a range divisible by a given number.

Solution:

import random

names = ["Albert", "Alan", "John", "James", "Mary"]

print(random.sample(names, 2))

Output: ['Mary', 'James']

753

x=int(input("Enter lower range limit: "))

y=int(input("Enter upper range limit: "))

n=int(input("Enter the number to be divided by: "))

for i in range(x,y+1):

 if(i%n==0):

 print(i)

Question 57

Question:

Write a program to read two numbers and print their quotient and remainder.

Solution:

a=int(input("Enter the first number: "))

b=int(input("Enter the second number: "))

quotient=a//b

remainder=a%b

print("Quotient is:", quotient)

print("Remainder is:", remainder)

for x in range(7):

 print(x)

0

1

2

3

4

5

6

Output

754

Question 58

Question:

Write a program to determine whether a given value is present in a collection of values.

Solution:

def myfunc(x, i):

 for value in x:

 if i == value:

 return True

 return False

print(myfunc([19, 15, 18, 13], 13))

print(myfunc([15, 18, 13], -11))

Question 59

Question:

Write a program to print odd numbers within a given range.

Solution:

x = 0

if x:

 print("Albert Einstein")

else:

 print("Elsa Einstein")

Output: Elsa Einstein

x = 1

if x:

 print("Albert Einstein")

else:

 print("Elsa Einstein")

Output: Albert Einstein

755

x=int(input("Enter the lower limit for the range: "))

y=int(input("Enter the upper limit for the range: "))

for i in range(x,y+1):

 if(i%2!=0):

 print(i)

Question 60

Question:

Write a program to find the smallest divisor of an integer.

Solution:

n=int(input("Enter an integer: "))

a=[]

for i in range(2,n+1):

 if(n%i==0):

 a.append(i)

a.sort()

print("Smallest divisor is:",a[0])

for i in range(5):

 print(i)

else:

 print("Albert!")

 # Output:

0

1

2

3

4

Albert!

756

Question 61

Question:

Write a program to count the number of digits in a number.

Solution:

n=int(input("Enter a number:"))

i=0

while(n>0):

 i=i+1

 n=n//10

print("The number of digits in the number are:", i)

Question 62

Question:

Write a program to read a number n and print and compute the series "1+2+…+n=".

Solution:

n=int(input("Enter a number: "))

x = "56"

y = 56

print(x == y)

Output: False

print(x != y)

Output: True

print(y == 56.0)

Output: True

print(None == None)

Output: True

print(None == False)

Output: False

757

x=[]

for i in range(1, n+1):

 print(i, sep=" ", end=" ")

 if(i<n):

 print("+", sep=" ", end=" ")

 x.append(i)

print("=",sum(x))

print()

Question 63

Question:

Write a program to read a number n and print the natural numbers summation pattern.

Solution:

n=int(input("Enter a number: "))

for j in range(1, n+1):

 x=[]

 for i in range(1, j+1):

 print(i, sep=" ", end=" ")

 if(i<j):

 print("+",sep=" ",end=" ")

 x.append(i)

 print("=", sum(x))

a = 16

b = 4

print(a > b)

Output: True

a = "16"

b = "4"

print(a > b)

Output: False

758

print()

Question 64

Question:

Write a program to read a number n and print an identity matrix of the desired size.

Solution:

n=int(input("Enter a number: "))

for i in range(0, n):

 for j in range(0, n):

 if(i==j):

 print("1", sep=" ", end=" ")

 else:

 print("0", sep=" ", end=" ")

 print()

import array

x = array.array('i', [11,13,15,17,19])

x.append(115)

for i in x:

 print(i)

Output:

11

13

15

17

19

115

759

Question 65

Question:

Write a program to read a number n and print an inverted star pattern of the desired size.

Solution:

n=int(input("Enter number of rows: "))

for i in range (n,0,-1):

 print((n-i) * ' ' + i * '*')

Question 66

Question:

Write a program to determine the hypotenuse of a right-angled triangle.

Solution:

from math import sqrt

print("Enter the lengths of shorter triangle sides: ")

x = float(input("x: "))

y = float(input("y: "))

x = "Stephen " \

 "William " \

 "Hawking"

print(x)

Output: Stephen William Hawking

760

z = sqrt(x**2 + y**2)

print("The length of the hypotenuse is: ", z)

Question 67

Question:

Write a program to find the largest number in a list.

Solution:

x=[]

n=int(input("Enter number of elements: "))

for i in range(1, n+1):

 y=int(input("Enter element: "))

 x.append(y)

x.sort()

print("Largest element is: ",x[n-1])

Question 68

Question:

Write a program to find the second largest number in a list.

x = """Stephen

William

Hawking"""

print(x)

Output:

Stephen

William

Hawking

761

Solution:

x=[]

n=int(input("Enter number of elements: "))

for i in range(1,n+1):

 y=int(input("Enter element: "))

 x.append(y)

x.sort()

print("Second largest element is: ",x[n-2])

Question 69

Question:

Write a program to put the even and odd elements in a list into two different lists.

Solution:

a=[]

n=int(input("Enter number of elements:"))

for i in range(1,n+1):

 b=int(input("Enter element:"))

 a.append(b)

even=[]

odd=[]

for j in a:

x = 3 * 'Alan '

print(x)

Output: Alan Alan Alan

x = "Einstein"

a = x[0]

print(a)

Output: E

b = x[3]

print(b)

Output: s

762

 if(j%2==0):

 even.append(j)

 else:

 odd.append(j)

print("The even list", even)

print("The odd list", odd)

Question 70

Question:

Write a program to concatenate all elements in a list into a string and return it.

Solution:

def myfunc(list):

 result= ''

 for i in list:

 result += str(i)

 return result

print(myfunc([2, 4, 13, 4]))

x = ["Alan", "Albert"]

y = ["Turing", "Einstein"]

for a in x:

 for b in y:

 print(a, b)

Output:

Alan Turing

Alan Einstein

Albert Turing

Albert Einstein

str = "wxyz"

print(str)

Output: wxyz

str = str[:2] + 'Q' + str[3:]

print(str)

Output: wxQz

763

Question 71

Question:

Write a program to add the three integers given. However, the sum will be zero if two

values are equal.

Solution:

def myfunc(a, b, c):

 if a == b or b == c or a==c:

 sum = 0

 else:

 sum = a + b + c

 return sum

print(myfunc(12, 11, 12))

print(myfunc(13, 22, 22))

print(myfunc(22, 22, 22))

print(myfunc(12, 22, 13))

Question 72

Question:

Write a program to sort a list according to the length of the elements.

x = "albert"

y = x.upper()

print(y)

Output: ALBERT

print(y.lower())

Output: albert

764

Solution:

x=[]

n=int(input("Enter number of elements: "))

for i in range(1,n+1):

 y=input("Enter element: ")

 x.append(y)

x.sort(key=len)

print(x)

Question 73

Question:

Write a program to create a list of tuples with the first element as the number and the

second element as the square of the number.

Solution:

x=int(input("Enter the lower range:"))

y=int(input("Enter the upper range:"))

a=[(i,i**2) for i in range(x,y+1)]

print(a)

x = "Einstein"

if "ein" in x:

 print('Found ein')

else:

 print("NOT found ein")

Output: Found ein

765

Question 74

Question:

Write a program to create a list of all numbers in a range which are perfect squares and

the sum of the digits of the number is less than 10.

Solution:

l=int(input("Enter lower range: "))

u=int(input("Enter upper range: "))

a=[]

a=[x for x in range(l,u+1) if (int(x**0.5))**2==x and

sum(list(map(int,str(x))))<10]

print(a)

Question 75

Question:

Write a program to convert a distance (in feet) to inches, yards, and miles.

Solution:

for x in range(32, 126):

 print(x, chr(x))

?

766

n = int(input("Enter the distance in feet: "))

x = n * 12

y = n / 3.0

z = n / 5280.0

print("The distance in inches is: %i inches." % x)

print("The distance in yards is: %.2f yards." % y)

print("The distance in miles is: %.2f miles." % z)

Question 76

Question:

Write a program to generate random numbers from 1 to 20 and append them to the list.

Solution:

import random

a=[]

n=int(input("Enter number of elements:"))

for j in range(n):

 a.append(random.randint(1,20))

print('Randomised list is: ',a)

x = "Albert Einstein"

print(x[1:4])

Output: lbe

print(x[2:])

Output: bert Einstein

print(x[:2])

Output: Al

767

Question 77

Question:

Write a program to sort a list of tuples in increasing order by the last element in each

tuple.

Solution:

def last(n):

 return n[-1]

def sort(tuples):

 return sorted(tuples, key=last)

a=input("Enter a list of tuples:")

print("Sorted:")

print(sort(a))

import array

x = array.array('i', [11,13,15,17,19])

x.reverse()

for i in x:

 print(i)

Output:

19

17

15

13

11

import numpy as np

x = np.array([2, 4, 8])

y = np.array([3, 6, 12])

print(x)

Output: [2 4 8]

print(y)

Output: [3 6 12]

print(np.multiply(x, y))

Output: [6 24 96]

print(np.dot(x, y)) # dot product

Output: 126

print(np.matmul(x, y)) # matrix multiplication

Output: 126

768

Question 78

Question:

Write a program to determine whether the system is a big-endian or little-endian

platform.

Solution:

import sys

print()

if sys.byteorder == "little":

 print("Little-endian platform.")

else:

 print("Big-endian platform.")

print()

Question 79

Question:

Write a program to examine the available built-in modules.

Solution:

x = 'Albert Einstein'

for i in x:

 if i == ' ':

 break

 print(i)

 # Output:

A

l

b

e

r

t

769

import sys

x = ', '.join(sorted(sys.builtin_module_names))

print("The available built-in modules are: ")

print()

print(x)

Question 80

Question:

Write a program to determine an object's size in bytes.

Solution:

import sys

x = "three"

y = 154

z = [11, 12, 13, 'Ball', 'Bat']

print("Size of ",x,"=",str(sys.getsizeof(x))+ " bytes")

print("Size of ",y,"=",str(sys.getsizeof(y))+ " bytes")

print("Size of ",z,"=",str(sys.getsizeof(z))+ " bytes")

x = 2

i = x == 2

print(i)

Output: True

if i:

 print("Albert Einstein")

else:

 print("Elsa Einstein")

Output: Albert Einstein

770

Question 81

Question:

Write a program to concatenate 'n' strings.

Solution:

x = ['Stephen', 'William', 'Hawking']

i = '-'.join(x)

print()

print(i)

print()

Question 82

Question:

Write a program to display the current date and time.

Solution:

import datetime

x = 'Albert Einstein'

for i in x:

 if i == ' ':

 continue

 print(i)

Output:

A

l

b

e

r

t

E

i

n

s

t

e

i

n

771

print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

Question 83

Question:

Write a program to calculate the volume of a sphere with a radius of 8.

Solution:

pi=22/7

r = 8.0

V = 4.0/3.0*pi*r**3

print('The volume of the sphere is: ',V)

Question 84

Question:

Write a program to check whether every number in a list exceeds a specific number.

Solution:

x = 1915

y = 'Albert'

print("%s Einstein's %s papers." % (y, x))

Output: Albert Einstein's 1915 papers.

772

x = [12, 33, 44, 55]

print()

print(all(i > 11 for i in x))

print(all(i > 100 for i in x))

print()

Question 85

Question:

Write a program that count the occurrences of a particular character within a given string.

Solution:

x = "Albert Einstein."

print("Number of occurrence of 'e' in the given string: ")

print(x.count("e"))

Question 86

Question:

Write a program to compute simple interest given all the required values.

x = 1915

y = 'Albert'

print(y + " Einstein's " + str(x) + " papers.")

Output: Albert Einstein's 1915 papers.

773

Solution:

x=float(input("Enter the principal amount: "))

y=float(input("Enter the rate: "))

z=int(input("Enter the time (years): "))

simple_interest=(x*y*z)/100

print("The simple interest is: ", simple_interest)

Question 87

Question:

Write a program to check whether a given year is a leap year or not.

Solution:

year=int(input("Enter the year to be checked: "))

if(year%4==0 and year%100!=0 or year%400==0):

 print("The", year, "is a leap year!")

else:

 print("The", year, "isn't a leap year!")

x = 1915

y = 'Albert'

print("{} Einstein's {} papers.".format(y, x))

Output: Albert Einstein's 1915 papers.

774

Question 88

Question:

Write a program that determines if a file path points to a file or a directory.

Solution:

import os

path="1.txt"

if os.path.isdir(path):

 print("It is a directory")

elif os.path.isfile(path):

 print("It is a regular file")

else:

 print("It is a unique file (socket, FIFO, device file)")

print()

Question 89

Question:

Write a program to generate all the divisors of an integer.

Solution:

x = 1915

y = 'Albert'

print("{0} Einstein's {1} papers.".format(y, x))

Output: Albert Einstein's 1915 papers.

775

x=int(input("Enter an integer: "))

print("The divisors of", x, "are: ")

for i in range(1, x+1):

 if(x%i==0):

 print(i)

Question 90

Question:

Write a program to print the table of a given number.

Solution:

n=int(input("Enter the number to print the tables for: "))

for i in range(1,11):

 print(n,"x",i,"=",n*i)

Question 91

Question:

Write a program to check if a number is an Armstrong number.

x = 1915

y = 'Albert'

print("{1} Einstein's {0} papers.".format(y, x))

Output: 1915 Einstein's Albert papers.

776

Solution:

n=int(input("Enter any number: "))

a=list(map(int,str(n)))

b=list(map(lambda x:x**3,a))

if(sum(b)==n):

 print("The number", n, "is an armstrong number. ")

else:

 print("The number", n, "isn't an arsmtrong number. ")

Question 92

Question:

Write a program to find Python site-packages.

Solution:

import site

print(site.getsitepackages())

x = 1915

y = 'Albert'

print(f"{y} Einstein's {x} papers.")

Output: Albert Einstein's 1915 papers.

777

Question 93

Question:

Write a program to check if a number is a perfect number.

Solution:

x = int(input("Enter any number: "))

sum = 0

for i in range(1, x):

 if(x % i == 0):

 sum = sum + i

if (sum == x):

 print("The number", x, "is a perfect number!")

else:

 print("The number", x, "is not a perfect number!")

Question 94

Question:

Write a program to find the LCM of two numbers.

Solution:

x = 1915

y = 'Albert'

print("{name} Einstein's {year} papers.".format(name = y, year = x))

Output: Albert Einstein's 1915 papers.

778

x=int(input("Enter the first number: "))

y=int(input("Enter the second number: "))

if(x>y):

 min=x

else:

 min=y

while(1):

 if(min%x==0 and min%y==0):

 print("LCM is:",min)

 break

 min=min+1

Question 95

Question:

Write a program to find the GCD of two numbers.

Solution:

import math

x=int(input("Enter the first number: "))

y=int(input("Enter the second number: "))

print("The GCD of the two numbers is", math.gcd(x,y))

x = 'Albert Einstein'

for i in x:

 if i == ' ':

 continue

 if i == 'n':

 break

 print(i)

print('NSTEIN')

Output:

A

l

b

e

r

t

E

i

NSTEIN

779

Question 96

Question:

Write a program to determine a file's size.

Solution:

import os

x = os.path.getsize("1.csv")

print("The size of 1.csv is:", x, "Bytes")

print()

Question 97

Question:

Write a program to check if two numbers are amicable numbers.

Solution:

x=int(input('Enter number 1: '))

x = [

["John", 56],

["Albert", 77],

["Alan", 17],

["Mary", 39],

["James", 44],

]

print(type(x))

Output: <class 'list'>

for i in x:

 print("{} {}".format(i[0], i[1]))

Output:

John 56

Albert 77

Alan 17

Mary 39

James 44

780

y=int(input('Enter number 2: '))

sum1=0

sum2=0

for i in range(1,x):

 if x%i==0:

 sum1+=i

for j in range(1,y):

 if y%j==0:

 sum2+=j

if(sum1==y and sum2==x):

 print('Amicable!')

else:

 print('Not Amicable!')

Question 98

Question:

Write a program to find the area of a triangle given all three sides.

Solution:

import math

a=int(input("Enter first side: "))

b=int(input("Enter second side: "))

c=int(input("Enter third side: "))

s=(a+b+c)/2

x = "Albert"

print("'{}'".format(x))

print("'{:12}'".format(x))

print("'{:<12}'".format(x))

print("'{:>12}'".format(x))

print("'{:^12}'".format(x))

Output:

'Albert'

'Albert '

'Albert '

' Albert'

' Albert '

781

area=math.sqrt(s*(s-a)*(s-b)*(s-c))

print("Area of the triangle is: ",round(area,2))

Question 99

Question:

Write a program to find the gravitational force acting between two objects.

Solution:

m1=float(input("Enter the first mass: "))

m2=float(input("Enter the second mass: "))

r=float(input("Enter the distance between the centers of the masses: "))

G=6.673*(10**-11)

f=(G*m1*m2)/(r**2)

print("Hence, the gravitational force is: ",round(f,2),"N")

Question 100

Question:

Write a program to determine if a string is numeric.

x = "Albert"

print("{:s}".format(x))

Output: Albert

782

Solution:

x = 'x549'

try:

 i = float(x)

 print('Numeric')

except (ValueError, TypeError):

 print('Not numeric')

print()

Question 101

Question:

Write a program to find out which host the routine is running on.

Solution:

import socket

x = socket.gethostname()

print("Host name: ", x)

a = 549.9678962314589

print("{:e}".format(a))

Output: 5.499679e+02

print("{:E}".format(a))

Output: 5.499679E+02

print("{:f}".format(a))

Output: 549.967896

print("{:.2f}".format(a))

Output: 549.97

print("{:F}".format(a))

Output: 549.967896

print("{:g}".format(a))

Output: 549.968

print("{:G}".format(a))

Output: 549.968

print("{:n}".format(a))

Output: 549.968

783

Question 102

Question:

Write a program to find the sum of first n positive integers.

Solution:

n=int(input("Enter a number: "))

sum = 0

while(n > 0):

 sum=sum+n

 n=n-1

print("The sum of first n positive integers is: ", sum)

n = int(input("Enter a number: "))

sum = (n * (n + 1)) / 2

print("The sum of first", n ,"positive integers is:", sum)

def myfunc(x = "Paul"):

 print("Albert " + x)

myfunc("Einstein")

Output: Albert Einstein

784

Question 103

Question:

Write a program to find the sum of series: 1 + 1/2 + 1/3 + ….. + 1/n.

Solution:

n=int(input("Enter the number of terms: "))

sum=0

for i in range(1,n+1):

 sum=sum+(1/i)

print("The sum of series is: ", round(sum,2))

Question 104

Question:

Write a program to get numbers divisible by 12 from a list using an anonymous function.

Solution:

x = [55, 144, 72, 155, 120, 135, 540]

result = list(filter(lambda i: (i % 15 == 0), x))

print("Numbers divisible by 12 are: ", result)

num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

print(num[::])

Output: ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

785

Question 105

Question:

Write a program to format a given string with a string length limitation.

Solution:

x = "987653421066"

print('%.5s' % x)

print('%.7s' % x)

print('%.9s' % x)

Question 106

Question:

Write a program that accepts a number as input and returns an error if it is not a number.

Solution:

pi = 3.141592653589793

r = 6

print(f"The value of PI is: '{pi:.4}'.")

Output: The value of PI is: '3.142'.

print(f"The value of PI is: '{pi:.4f}'.")

Output: The value of PI is: '3.1416'.

print(f"Area of a circle is: {pi * r ** 2}")

Output: Area of a circle is: 113.09733552923255

print(f"Area of a circle is: {pi * r ** 2:.4f}")

Output: Area of a circle is: 113.0973

786

while True:

 try:

 a = int(input("Enter a number: "))

 print("This is a number")

 break

 except ValueError:

 print("This isn't a number")

 print()

Question 107

Question:

Write a program to filter the negative numbers from a list.

Solution:

x = [22, -10, 11, -28, 52, -75]

y = list(filter(lambda i: i <0, x))

print("Negative numbers in the above list: ", y)

x = 68

print("<%s>" % x)

Output: <68>

print("<%10s>" % x)

Output: < 68>

print("<%-10s>" % x)

Output: <68 >

print("<%c>" % x)

Output: D

print("<%d>" % x)

Output: <68>

print("<%0.5d>" % x)

Output: <00068>

num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

print(num[::1])

Output: ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

787

Question 108

Question:

Write a program to find whether a number is a power of two.

Solution:

def myfunc(n):

 """Return True if n is a power of two."""

 if n <= 0:

 return False

 else:

 return n & (n - 1) == 0

n = int(input('Enter a number: '))

if myfunc(n):

 print('{} is a power of two.'.format(n))

else:

 print('{} is not a power of two.'.format(n))

import array

x = array.array('i', [11,13,15,17,19,13])

print("Number of times the number 13 appears in the above array is: ", x.count(13))

Output: Number of times the number 13 appears in the above array is: 2

x="Albert"

print(r"b\nc {x}")

Output: b\nc {x}

print(rf"b\nc {x}")

Output: b\nc Albert

print(fr"b\nc {x}")

Output: b\nc Albert

788

Question 109

Question:

Write a program to solve (a - b) * (a - b).

Solution:

a, b = 2, 4

result = a * a - 2 * a * b + b * b

print("({} - {}) ^ 2 = {}".format(a, b, result))

Question 110

Question:

Write a program to generate a new string with the prefix "Al" from a given string. Return

the given text in its original form if it already contains the "Al" prefix.

Solution:

def myfunc(x):

 if len(x) >= 2 and x[:2] == "Al":

 return x

num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

print(num[::2])

Output: ['1', '3', '5', '7', '9']

789

 return "Al" + x

print(myfunc("Albert"))

print(myfunc("bert"))

Question 111

Question:

Write a program that count all occurrences of the number 5 in a list.

Solution:

def myfunc(y):

 i = 0

 for x in y:

 if x == 5:

 i = i + 1

 return i

print(myfunc([11, 5, 16, 18, 15]))

print(myfunc([17, 14, 5, 12, 9, 5]))

def myfunc(x):

 return 6 * x

print(myfunc(6))

Output: 36

num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

print(num[1::2])

Output: ['2', '4', '6', '8', '10']

790

Question 112

Question:

Write a program to determine if a file is present.

Solution:

import os.path

print(os.path.isfile('1.txt'))

print(os.path.isfile('1.pdf'))

Question 113

Question:

Write a program to replace all occurrences of 'a' with '$' in a string.

Solution:

x=input("Enter string: ")

x=x.replace('a','$')

x=x.replace('A','$')

print("Modified string: ")

num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

print(num[2:8:2])

Output: ['3', '5', '7']

x = ['11', '12', '13', '14']

x[0] = '10'

print(x)

Output: ['10', '12', '13', '14']

791

print(x)

Question 114

Question:

Write a program to calculate the product of a list of numbers (without using for loop).

Solution:

from functools import reduce

num = [2, 4, 10,11]

result = reduce((lambda x, y: x * y), num)

print("Product of the above numbers is: ", result)

Question 115

Question:

Write a program to detect if two strings are anagrams.

Solution:

num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

print(num[1:20:3])

Output: ['2', '5', '8']

x = ['11', '12', '13', '14']

x[1:3] = ['alan', 'john']

print(x)

Output: ['11', 'alan', 'john', '14']

792

x=input("Enter first string: ")

y=input("Enter second string: ")

if(sorted(x)==sorted(y)):

 print("The 2 strings are anagrams.")

else:

 print("The 2 strings aren't anagrams.")

Question 116

Question:

Write a program to form a string where the first character and the last character have

been exchanged.

Solution:

def change(x):

 return x[-1:] + x[1:-1] + x[:1]

x=input("Enter a string: ")

print("Modified string: ")

print(change(x))

x = ['11', '12', '13', '14']

x[1:3] = ['john']

print(x)

Output: ['11', 'john', '14']

x = ['100', '120', '130', '140']

x[1:2] = ['bat', 'ball']

print(x)

Output: ['100', 'bat', 'ball', '130', '140']

793

Question 117

Question:

Write a program to count the number of vowels in a string.

Solution:

string=input("Enter string:")

vowels=0

for i in string:

 if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u' or i=='A' or i=='E'

or i=='I' or i=='O' or i=='U'):

 vowels=vowels+1

print("Number of vowels are:")

print(vowels)

Question 118

Question:

Write a program to take a string and replace every blank space with a hyphen.

Solution:

x = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

print(x)

Output: [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

x[1::2] = [10, 10, 10, 10, 10, 10]

print(x)

Output: [11, 10, 13, 10, 15, 10, 17, 10, 19, 10, 21, 10]

794

string=input("Enter a string: ")

string=string.replace(' ','-')

print("Modified string:")

print(string)

Question 119

Question:

Write a program to calculate the length of a string without using library functions.

Solution:

s=input("Enter string: ")

x=0

for i in s:

 x=x+1

print("Length of the string is: ")

print(x)

import array

x = array.array('i', [11,13,15,17,19,22])

print("Length of the array is: ", len(x))

Output: Length of the array is: 6

a = ['alan', 'john', 'mary', 'david']

b = a

a[0] = 'computer'

print(a)

Output: ['computer', 'john', 'mary', 'david']

print(b)

Output: ['computer', 'john', 'mary', 'david']

795

Question 120

Question:

Write a program to determine whether lowercase letters are present in a string.

Solution:

x = 'Albert Einstein'

print(any(i.islower() for i in x))

Question 121

Question:

Write a program to calculate the number of words and characters present in a string.

Solution:

x=input("Enter a string: ")

char=0

word=1

for i in x:

 char=char+1

from copy import deepcopy

a = ['green', 'red', 'blue', 'orange']

b = deepcopy(a)

a[0] = 'albert'

print(a)

Output: ['albert', 'red', 'blue', 'orange']

print(b)

Output: ['green', 'red', 'blue', 'orange']

x = ["albert", "1915", "john"]

y = ["albert", 1915, "john"]

print(":".join(x))

Output: albert:1915:john

796

 if(i==' '):

 word=word+1

print("Number of words in the string: ")

print(word)

print("Number of characters in the string: ")

print(char)

Question 122

Question:

Write a program that rounds a floating-point integer to a specified number of decimal

places.

Solution:

x = 549.968

print('%f' % x)

print('%.2f' % x)

print()

def myfunc(x,y):

 print(x+y)

myfunc("5","8")

Output: 58

x = ["albert", "1915", "john"]

y = ["albert", 1915, "john"]

print(":".join(map(str, y)))

Output: albert:1915:john

x = ["albert", "1915", "john"]

y = ["albert", 1915, "john"]

print(":".join(str(i) for i in y))

Output: albert:1915:john

797

Question 123

Question:

Write a program to count number of lowercase characters in a string.

Solution:

x=input("Enter string: ")

count=0

for i in x:

 if(i.islower()):

 count=count+1

print("The number of lowercase characters is: ")

print(count)

Question 124

Question:

Write a program to count the number of lowercase letters and uppercase letters in a

string.

Solution:

print("xy:wz:pq".split(':'))

Output: ['xy', 'wz', 'pq']

798

x=input("Enter a string: ")

count1=0

count2=0

for i in x:

 if(i.islower()):

 count1=count1+1

 elif(i.isupper()):

 count2=count2+1

print("The number of lowercase characters is: ")

print(count1)

print("The number of uppercase characters is: ")

print(count2)

Question 125

Question:

Write a program to calculate the number of digits and letters in a string.

Solution:

x=input("Enter a string: ")

count1=0

count2=0

for i in x:

 if(i.isdigit()):

x = "bat ball bag".split()

print(x)

Output: ['bat', 'ball', 'bag']

x = ['apple', 'orange', 'mango', 'kiwi']

print(x.index('orange'))

Output: 1

799

 count1=count1+1

 count2=count2+1

print("The number of digits is: ")

print(count1)

print("The number of characters is: ")

print(count2)

Question 126

Question:

Write a program to form a new string made of the first 2 characters and last 2 characters

from a given string.

Solution:

x=input("Enter a string: ")

count=0

for i in x:

 count=count+1

new=x[0:2]+x[count-2:count]

print("Newly formed string is: ")

print(new)

x = ['apple', 'orange', 'mango', 'kiwi']

x.insert(2, 'fig')

print(x)

Output: ['apple', 'orange', 'fig', 'mango', 'kiwi']

x = ['apple', 'orange', 'mango', 'kiwi']

x.insert(len(x), 'papaya')

print(x)

Output: ['apple', 'orange', 'mango', 'kiwi', 'papaya']

800

Question 127

Question:

Write a program to create a bytearray from a list.

Solution:

x = [10, 20, 56, 35, 17, 99]

Create bytearray from list of integers.

y = bytearray(x)

for i in y: print(i)

print()

Question 128

Question:

Write a program to determine whether an integer fits in 64 bits.

Solution:

x = 60

if x.bit_length() <= 63:

x = ['apple', 'orange', 'mango', 'kiwi', 'papaya']

x[2:4] = []

print(x)

Output: ['apple', 'orange', 'papaya']

801

 print((-2 ** 63).bit_length())

 print((2 ** 63).bit_length())

Question 129

Question:

Write a program that returns true if the two given integer values are equal, or if their sum

or difference is 10.

Solution:

def myfunc(a, b):

 if a == b or abs(a-b) == 10 or (a+b) == 10:

 return True

 else:

 return False

print(myfunc(17, 2))

print(myfunc(30, 20))

print(myfunc(5, 5))

print(myfunc(17, 13))

print(myfunc(53, 73))

x = [17, 22, -44, 38, 6]

print(x)

Output: [17, 22, -44, 38, 6]

x.sort(reverse=True)

print(x)

Output: [38, 22, 17, 6, -44]

x = [17, 22, -44, 38, 6]

print(x)

Output: [17, 22, -44, 38, 6]

x.sort(key=abs, reverse=True)

print(x)

Output: [-44, 38, 22, 17, 6]

802

Question 130

Question:

Write a program to add two objects if they are both of the integer type.

Solution:

def myfunc(x, y):

 if not (isinstance(x, int) and isinstance(y, int)):

 return "Inputs have to be integers only!"

 return x + y

print(myfunc(50, 70))

print(myfunc(20, 50.74))

print(myfunc('6', 8))

print(myfunc('8', '8'))

Question 131

Question:

Write a program to add leading zeros to a string.

Solution:

x = ['alan', 'albert', 'james', 'bob']

x.sort(key=len)

print(x)

Output: ['bob', 'alan', 'james', 'albert']

A program to sort the list

according to length

803

x='122.22'

x = x.ljust(8, '0')

print(x)

x = x.ljust(10, '0')

print(x)

Question 132

Question:

Write a program that displays strings with double quotes.

Solution:

import json

print(json.dumps({'Albert': 1, 'Alan': 2, 'Alex': 3}))

Question 133

Question:

Write a program to check if a given key exists in a dictionary or not.

x = ['alan', 'albert', 'james', 'bob']

x.sort(key=len, reverse=True)

print(x)

Output: ['albert', 'james', 'alan', 'bob']

804

Solution:

d={'A':1,'B':2,'C':3}

key=input("Enter key to check:")

if key in d.keys():

 print("Key is present and value of the key is:")

 print(d[key])

else:

 print("Key isn't present!")

Question 134

Question:

Write a program to find the sum all the items in a dictionary.

Solution:

d={'A':100,'B':540,'C':239}

print("Total sum of values in the dictionary is: ")

print(sum(d.values()))

for x in range(10, 19, 5):

 print(x)

Output:

10

15

805

Question 135

Question:

Write a program to multiply all the items in a dictionary.

Solution:

d={'A':10,'B':10,'C':239}

x=1

for i in d:

 x=x*d[i]

print(x)

Question 136

Question:

Write a program to remove the given key from a dictionary.

Solution:

d = {'a':1,'b':2,'c':3,'d':4}

print("Initial dictionary")

x = ['albert', 'elsa']

y = ['david']

print(x)

Output: ['albert', 'elsa']

print(x * 2)

Output: ['albert', 'elsa', 'albert', 'elsa']

print(x + y)

Output: ['albert', 'elsa', 'david']

806

print(d)

key=input("Enter the key to delete(a-d):")

if key in d:

 del d[key]

else:

 print("Key not found!")

 exit(0)

print("Updated dictionary")

print(d)

Question 137

Question:

Write a program to list the home directory without using an absolute path.

Solution:

import os.path

print(os.path.expanduser('~'))

x = [5,8,57,35,44,14,28]

print([i for i in x if i%2!=0]) # Output:

[5, 57, 35]

a, b = 11, 12

print(a)

Output: 11

print(b)

Output: 12

a, b = b, a

print(a)

Output: 12

print(b)

Output: 11

807

Question 138

Question:

Write a program to input two integers in a single line.

Solution:

print("Enter the value of a and b: ")

a, b = map(int, input().split())

print("The value of a and b are: ", a, b)

Question 139

Question:

Write a program to convert true to 1 and false to 0.

Solution:

a = 'true'

a = int(a == 'true')

print(a)

a = 'xyz'

print([2] * 5)

Output: [2, 2, 2, 2, 2]

x = [0] * 5

for i in range(0, 5):

 print("{} {}".format(i, x[i]))

Output:

0 0

1 0

2 0

3 0

4 0

808

a = int(a == 'true')

print(a)

Question 140

Question:

Write a program to determine whether a variable is an integer or a string.

Solution:

print(isinstance(16,int) or isinstance(16,str))

print(isinstance("16",int) or isinstance("16",str))

Question 141

Question:

Write a program to count the number of vowels present in a string entered by the user

using sets.

y = 'AB+CD+EF+GH+IJ+KL+MN'

x = y.split('+')

x.sort(key=len, reverse=True)

print(x)

Output: ['AB', 'CD', 'EF', 'GH', 'IJ', 'KL', 'MN']

809

Solution:

s=input("Enter a string: ")

count = 0

vowels = set("aeiou")

for letter in s:

 if letter in vowels:

 count += 1

print("The number of vowels present in a string is: ")

print(count)

Question 142

Question:

Write a program to check common letters in the two input strings.

Solution:

x=input("Enter the first string: ")

y=input("Enter the second string: ")

z=list(set(x)&set(y))

print("The common letters are: ")

for i in z:

 print(i)

x= ['Alan Turing', 'Mary John']

y = ['David Hilbert', 'Joseph Sam']

x.extend(y)

print(x)

Output: ['Alan Turing', 'Mary John', 'David Hilbert', 'Joseph Sam']

810

x=input("Enter the first string: ")

y=input("Enter the second string: ")

z=list(set(x)-set(y))

print("The letters in the first string but not in the second string are: ")

for i in z:

Question:

Question 144

print(i)

Question 143

Question:

Write a program to display which letters are in the first string but not in the second string.

Solution:

Write a program to determine whether a variable is a list, tuple, or set.

Solution:

811

Distributed computing refers to the use of multiple interconnected computers to solve a single
problem or perform a single task. The goal of distributed computing is to leverage the processing
power and storage capacity of multiple computers to achieve a common goal. In a distributed
computing system, each computer works independently and cooperatively with the other computers
in the network to share data, resources, and processing tasks.

Distributed computing systems can vary in size and complexity, ranging from small peer-to-peer
networks to large-scale grid computing systems that involve thousands of computers. Examples of
distributed computing systems include cloud computing platforms, content delivery networks, and
distributed databases.

Distributed computing can offer a number of advantages over traditional centralized computing
systems, such as increased processing power, scalability, fault tolerance, and reduced latency.
However, it can also introduce challenges related to security, data consistency, and communication
between the different nodes in the network.

i = ['list', True, 8.9, 6]

if type(i) is list:

 print('i is a list')

elif type(i) is set:

 print('i is a set')

elif type(i) is tuple:

 print('i is a tuple')

else:

 print('Neither a set, list, or tuple.')

Question 145

Question:

Write a program to determine whether a given number is even or odd recursively.

Solution:

def myfunc(n):

 if (n < 2):

 return (n % 2 == 0)

 return (myfunc(n - 2))

n=int(input("Enter a number: "))

if(myfunc(n)==True):

 print("Number is even!")

else:

x = {

"albert" : "46",

"bob" : "18",

"john" : "68",

}

for name, age in x.items():

 print("{} => {}".format(name, age))

Output:

albert => 46

bob => 18

john => 68

import numpy as np

x = np.random.randint(10, size=(2, 3))

print(x)

?

812

 print("Number is odd!")

Question 146

Question:

Write a program that examines a list of numbers to see if they are all distinct from one

another.

Solution:

def myfunc(x):

 if len(x) == len(set(x)):

 return True

 else:

 return False;

print(myfunc([11,15,17,19]))

print(myfunc([12,14,15,15,17,19]))

x = "Albert "

y = "Einstein"

print(x + y)

Output: Albert Einstein

x = {}

x['name'] = 'albert'

print(x)

Output: {'name': 'albert'}

x['email'] = 'albert_john@gmail.com'

print(x)

Output: {'name': 'albert', 'email': 'albert_john@gmail.com'}

813

Question 147

Question:

Write a program to add two positive numbers without using the '+' operator.

Solution:

def myfunc(x, y):

 while y != 0:

 z = x & y

 x = x ^ y

 y = z << 1

 return x

print(myfunc(12, 50))

Question 148

Question:

Write a program to find the factorial of a number using recursion.

Solution:

x = lambda a, b: a * b

print(x(2, 2))

Output: 4

x = {

'name': 'Albert',

'age': 26,

'email': None

}

print(x.get('name'))

Output: Albert

print(x.get('age'))

Output: 26

print(x.get('email'))

Output: None

print(x.get('address'))

Output: None

814

def myfunc(n):

 if(n <= 1):

 return 1

 else:

 return(n*myfunc(n-1))

n = int(input("Enter a number: "))

print("Factorial of", n, "is:", myfunc(n))

Question 149

Question:

Write a program to determine whether a right triangle is formed by three given side

lengths. If the specified sides make a right triangle, print "Yes," otherwise print "No."

Solution:

print("Enter three side lengths of a triangle: ")

a,b,c = sorted(list(map(int,input().split())))

if a**2+b**2==c**2:

 print('Yes')

else:

 print('No')

x = {

'name': 'Albert',

'age': 26,

'email': None

}

print('name' in x.values())

Output: False

print('Albert' in x.values())

Output: True

815

Question 150

Question:

Write a program to find the number of equal numbers among three given integers.

Solution:

def myfunc(a, b, c):

 result= set([a, b, c])

 if len(result)==3:

 return 0

 else:

 return (4 - len(result))

print(myfunc(11, 11, 11))

print(myfunc(11, 12, 12))

Question 151

Question:

Write a program to extract numbers from a given string.

Solution:

x = {

'name': 'Albert',

'age': 26,

'email': None

}

print(x)

Output: {'name': 'Albert', 'age': 26, 'email': None}

816

def myfunc(x):

 result = [int(x) for x in x.split() if x.isdigit()]

 return result

x = "5 bags, 10 pencils and 55 books"

print(myfunc(x))

Question 152

Question:

Write a program to get the smallest number from a list.

Solution:

def myfunc(list):

 x = list[0]

 for i in list:

 if i < x:

 x = i

 return x

print(myfunc([11, 22, -28, 3]))

x = {}

x['A'] = 11

x['B'] = 12

x['C'] = 13

x['D'] = 14

print(x)

Output: {'A': 11, 'B': 12, 'C': 13, 'D': 14}

817

Question 153

Question:

Write a program to determine whether every string in a list is equal to a given string..

Solution:

x = ["ball", "bat", "bag", "book"]

y = ["book", "book", "book", "book"]

print(all(i == 'bag' for i in x))

print(all(i == 'book' for i in y))

Question 154

Question:

Write a program to count the number of words in a text file.

Solution:

x = input("Enter the file name: ")

num_words = 0

x = {

'name': 'Albert',

'email': 'albert_john@gmail.com'

}

for i in x:

 print("{} -> {}".format(i, x[i]))

Output:

name -> Albert

email -> albert_john@gmail.com

818

with open(x, 'r') as f:

 for line in f:

 num_words += len(line.split())

print("Number of words: ", num_words)

Question 155

Question:

Write a program to count the number of lines in a text file.

Solution:

x = input("Enter the file name: ")

num_lines = 0

with open(x, 'r') as f:

 for line in f:

 num_lines += 1

print("Number of lines: ", num_lines)

x = 11

y = 12.5

z = "Albert"

print(type(x)) # Output: <class 'int'>

print(type(y)) # Output: <class 'float'>

print(type(z)) # Output: <class 'str'>

import numpy as np

x = np.random.random((3, 6))

print(x)

?

819

Question 156

Question:

Write a program to create a list of empty dictionaries.

Solution:

print([{} for _ in range(10)])

Question 157

Question:

Write a program that computes the average of two lists.

Solution:

def myfunc(x, y):

 result = sum(x + y) / len(x + y)

 return result

x = [11, 11, 13, 14, 14, 15, 16, 17]

y = [0, 11, 12, 13, 14, 14, 15, 17, 18]

x = set()

print(x)

Output: set()

x.add('Mary')

print(x)

Output: {'Mary'}

x.add('Mary')

print(x)

Output: {'Mary'}

x.add('John')

print(x)

Output: {'John', 'Mary'}

820

print("The Average of two lists: ", myfunc(x, y))

Question 158

Question:

Write a program to determine the maximum and minimum value in the three given lists.

Solution:

x = [12,13,15,28,27,32,53]

y = [54,32,91,0,41,13,19]

z = [12,11,51,16,15,58,49]

print("Maximum value in the three given lists is: ")

print(max(x+y+z))

print("Minimum value in the three given lists is: ")

print(min(x+y+z))

x = int(5)

y = int(5.2)

w = float(5.6)

z = int("6")

print(x) # Output: 5

print(y) # Output: 5

print(w) # Output: 5.6

print(z) # Output: 6

821

Question 159

Question:

Write a program to delete empty lists from a given list of lists.

Solution:

x = [[], [], [], ['Ball', 'Bag'], [11,12], ['Bat','Book'], []]

print([i for i in x if i])

Question 160

Question:

Write a program to determine whether or not every dictionary in a list is empty.

Solution:

x = [{},{},{}]

y = [{2:6},{},{}]

print(all(not i for i in x))

print(all(not i for i in y))

import numpy as np

x = np.eye(2)

print(x)

print()

y = np.eye(2, 4)

print(y)

Output:

[[1. 0.]

 [0. 1.]]

[[1. 0. 0. 0.]

 [0. 1. 0. 0.]]

822

Question 161

Question:

Write a program that takes two lists and returns True when at least one of the elements in

the lists is shared by both.

Solution:

def myfunc(A, B):

 result = False

 for x in A:

 for y in B:

 if x == y:

 result = True

 return result

print(myfunc([21,22,23,24,25], [25,26,27,28,29]))

print(myfunc([31,32,33,34,35], [36,37,38,39]))

x = "Albert Einstein"

print(x[2:5]) # Output: ber

x = 5

def myfunc(i):

 i = i+1

 return i

print(x)

Output: 5

print(myfunc(x))

Output: 6

print(x)

Output: 5

823

Question 162

Question:

Write a program to determine whether a list is empty or not.

Solution:

x = []

if x:

 print("List is not empty")

else:

 print("List is empty")

Question 163

Question:

Write a program to read a file and capitalize the first letter of every word in the file.

Solution:

x = input("Enter the file name: ")

x = lambda a, b, c: a + b + c

print(x(2, 2, 2))

Output: 6

824

with open(x, 'r') as f:

 for line in f:

 print(line.title())

Question 164

Question:

Write a program to read the contents of a file in reverse order.

Solution:

x=input("Enter the file name: ")

for line in reversed(list(open(x))):

 print(line.rstrip())

Question 165

Question:

Write a program to decapitalize the first letter of a given string.

set(['John', 'Mary'])

x = set(['Mary', 'James', 'Alan'])

y = set(['Bob', 'Joe', 'Albert', 'Mary'])

x.update(y)

print(x)

Output: {'Joe', 'Alan', 'Mary', 'James', 'Bob', 'Albert'}

print(y)

Output: {'Joe', 'Bob', 'Mary', 'Albert'}

def myfunc(a, b):

 c = a + b

 return c

print(myfunc(12, 33))

Output: 45

print(myfunc(28, 93))

Output: 121

825

Solution:

def myfunc(i, x = False):

 return ''.join([i[:1].lower(), (i[1:].upper() if x else i[1:])])

print(myfunc('Albert'))

print(myfunc('John'))

Question 166

Question:

Write a program to remove spaces from a given string.

Solution:

def myfunc(x):

 x = x.replace(' ','')

 return x

print(myfunc("a lbe rt ein stein"))

print(myfunc("a l a n"))

x :int = 6

print(x)

Output: 6

x :str = "Albert"

print(x)

Output: Albert

826

Question 167

Question:

Write a program that calculate the difference between a given number and 10, returning

double the absolute difference if the value is higher than 10.

Solution:

def myfunc(x):

 if x <= 10:

 return 10 - x

 else:

 return (x - 10) * 2

print(myfunc(8))

print(myfunc(16))

Question 168

Question:

Write a program that adds three given numbers, returning three times their sum if the

values are equivalent.

x :float = 26.69

print(x)

Output: 26.69

827

Solution:

def myfunc(a, b, c):

 sum = a + b + c

 if a == b == c:

 sum = sum * 3

 return sum

print(myfunc(11, 12, 13))

print(myfunc(13, 13, 13))

Question 169

Question:

Write a program to check whether an OS is running a Python shell in 32 or 64 bit mode.

Solution:

import platform

print(platform.architecture()[0])

def myfunc(x :int, y :int) -> int:

 return x+y

print(myfunc(12, 13))

Output: 25

828

Question 170

Question:

Write a program to implement birthday dictionary.

Solution:

if __name__ == '__main__':

 birthdays = {

 'Albert Einstein': '03/14/1879',

 'Benjamin Franklin': '01/17/1706',

 'Ada Lovelace': '12/10/1815',

 'Donald Trump': '06/14/1946',

 'Rowan Atkinson': '01/6/1955'}

 print('Welcome to the birthday dictionary. We know the birthdays of:')

 for name in birthdays:

 print(name)

 print('Who\'s birthday do you want to look up?')

 name = input()

 if name in birthdays:

 print('{}\'s birthday is {}.'.format(name, birthdays[name]))

 else:

 print('Sadly, we don\'t have {}\'s birthday.'.format(name))

import os

x = os.path.join('home', 'etc', 'files')

print(x)

Output: home\etc\files

829

Question 171

Question:

Write a program to find the name and location of the file that is currently running.

Solution:

import os

print("Current File Name : ", os.path.realpath(__file__))

Question 172

Question:

Write a program to implement password generator.

Solution:

import random

x =

"abcdefghijklmnopqrstuvwxyz01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()?"

import platform

print(platform.system())

Output: Windows

print(platform.release())

Output: 10

830

passlen = 8

print("".join(random.sample(x, passlen)))

Question 173

Question:

Write a program to display calendar of the given month and year.

Solution:

importing calendar module

import calendar

yy = 2014 # year

mm = 11 # month

To take month and year input from the user

yy = int(input("Enter year: "))

mm = int(input("Enter month: "))

display the calendar

print(calendar.month(yy, mm))

x = ["apple", "orange", "kiwi", "ball", "bat", "blackboard"]

print(list(filter(lambda i: len(i) == 4, x)))

Output: ['kiwi', 'ball']

from functools import reduce

x = [11, 12, 13, 14]

print(reduce(lambda a, b: a+b, x))

Output: 50

print(reduce(lambda a, b: a*b, x))

Output: 24024

831

Question 174

Question:

Write a program to eliminate a newline.

Solution:

x='Albert Einstein\n'

print(x.rstrip())

Question 175

Question:

Write a program to remove existing indentation from all of the lines in a given text.

Solution:

import textwrap

x = '''

 Albert Einstein was a German-born theoretical physicist,

 widely acknowledged to be one of the greatest and most

 influential physicists of all time. Einstein is best known

 for developing the theory of relativity, but he also made

from functools import reduce

print(reduce(lambda a, b: a+b, [], 1))

Output: 1

print(reduce(lambda a, b: a+b, [5, 5], 0))

Output: 10

print(reduce(lambda a, b: a*b, [5, 6], 0))

Output: 0

print(reduce(lambda a, b: a*b, [6, 5], 1))

Output: 30

print(reduce(lambda a, b: a*b, [], 0))

Output: 0

832

 important contributions to the development of the theory of

 quantum mechanics.

 '''

print(x)

print(textwrap.dedent(x))

Question 176

Question:

Write a program to count the number of CPUs being used.

Solution:

import multiprocessing

print(multiprocessing.cpu_count())

Question 177

Question:

Write a program to reverse a string if its length is a multiple of 6.

x = ['Mon', 'Tue', 'Wed', 'Thru', 'Fri']

y = [1, 2, 3, 4, 5]

print(zip(x, y))

?

833

Solution:

def myfunc(x):

 if len(x) % 6 == 0:

 return ''.join(reversed(x))

 return x

print(myfunc('alan'))

print(myfunc('albert'))

Question 178

Question:

Put "xyz" at the end of the specified string (length should be at least 3). If the provided

string already ends with "xyz," add "123" to it. If the specified string's length is less than

three, leave it unaltered.

Solution:

def myfunc(x):

 i = len(x)

 if i > 2:

 if x[-3:] == 'xyz':

 x += '123'

x = ['Mon', 'Tue', 'Wed', 'Thru', 'Fri']

y = [1, 2, 3, 4, 5]

print(list(zip(x, y)))

Output: [('Mon', 1), ('Tue', 2), ('Wed', 3), ('Thru', 4), ('Fri', 5)]

import numpy as np

x= np.zeros(5, dtype='float32')

print(x)

Output: [0. 0. 0. 0. 0.]

print(x.dtype)

Output: float32

834

 else:

 x += 'xyz'

 return x

print(myfunc('xy'))

print(myfunc('xyz'))

print(myfunc('morning'))

Question 179

Question:

Write a program to shuffle the elements of a given list.

Solution:

import random

x = [11, 12, 13, 14, 15]

random.shuffle(x)

print(x)

x = ['Mon', 'Tue', 'Wed', 'Thru', 'Fri']

y = [1, 2, 3, 4, 5]

print(dict(zip(x, y)))

Output: {'Mon': 1, 'Tue': 2, 'Wed': 3, 'Thru': 4, 'Fri': 5}

import numpy as np

x = np.array([6, 8, 10], dtype='int8')

print(x /2)

Output: [3. 4. 5.]

print(x.dtype)

Output: int8

835

Question 180

Question:

Three positive numbers are present in a list. Write a program to determine whether the

sum of the digits in each number is equal or not. If true, return true; otherwise, return

false.

Solution:

def myfunc(x):

 return x[0] % 9 == x[1] % 9 == x[2] % 9

x = [14, 5, 23]

print(myfunc(x))

Question 181

Question:

Write a program to get IP address of your computer.

Solution:

import socket

x = socket.gethostname()

x = [True, True]

y = [True, False]

z = [False, False]

print(all(x))

Output: True

print(all(y))

Output: False

print(all(z))

Output: False

print()

print(any(x))

Output: True

print(any(y))

Output: True

print(any(z))

Output: False

836

y = socket.gethostbyname(x)

print("Your Computer Name is: " + x)

print("Your Computer IP Address is: " + y)

Question 182

Question:

Write a program to determine whether a series of integers has an increasing trend or not.

Solution:

def myfunc(x):

 if (sorted(x) == x):

 return True

 else:

 return False

print(myfunc([11,12,13,14]))

print(myfunc([11,12,15,13,14]))

x = ["alan", "john", "albert"]

x.clear()

print(x) # Output: []

print(12 > 10)

Output: True

print(10 > 15)

Output: False

837

Question 183

Question:

Write a program to illustrate Dice Roll Simulator.

Solution:

import random

min = 1

max = 6

roll_again = "yes"

while roll_again == "yes" or roll_again == "y":

 print ("Rolling the dices...")

 print ("The values are....")

 print (random.randint(min, max))

 print (random.randint(min, max))

 roll_again = input("Roll the dices again?")

Question 184

Question:

Write a program to convert the temperature in degree centigrade to Fahrenheit.

x = [12, 14]

print(all(map(lambda i: i > 5, x)))

Output: True

print(all(map(lambda i: i > 13, x)))

Output: False

838

Solution:

c = input(" Enter temperature in Centigrade: ")

f = (9*(int(c))/5)+32

print(" Temperature in Fahrenheit is: ", f)

Question 185

Question:

Write a program to check whether the given integer is a multiple of 5.

Solution:

x = int(input("Enter an integer: "))

if(x%5==0):

 print(x, "is a multiple of 5")

else:

 print(x, "is not a multiple of 5")

Question 186

Question:

Write a program to check whether the given integer is a multiple of both 3 and 5.

import numpy as np

x = np.array([13, 14, 17])

print(x)

Output: [13 14 17]

print(x * 3)

Output: [39 42 51]

print(x + 4)

Output: [17 18 21]

print(x.dtype)

Output: int32

839

Solution:

x = int(input("Enter an integer: "))

if((x%3==0)and(x%5==0)):

 print(x, "is a multiple of both 3 and 5")

else:

 print(x, "is not a multiple of both 3 and 5")

Question 187

Question:

Write a program to display all the multiples of 5 within the range 10 to 70.

Solution:

for i in range(10,70):

 if (i%5==0):

 print(i)

Question 188

Question:

Write a program to display all integers within the range 50-100 whose sum of digits is an

even number.

x = [11, 12, 13, 450]

for i in x:

 print(i)

print(x) ?

840

Solution:

for i in range(50,100):

 num = i

 sum = 0

 while(num!=0):

 digit = num%10

 sum = sum + digit

 num = num//10

 if(sum%2==0):

 print(i)

Question 189

Question:

Write a program to print the numbers from a given number n till 0 using recursion.

Solution:

def myfunc(n):

 if (n==0):

 return

 print(n)

 n=n-1

 myfunc(n)

x = lambda a: a + 5

print(x(2))

Output: 7

from functools import reduce

x = [12, 11, 14, 31]

print(reduce(lambda a,b: a if a < b else b, x))

Output: 11 (minimum)

print(reduce(lambda a,b: a if a > b else b, x))

Output: 31 (maximum)

841

myfunc(9)

Question 190

Question:

Write a program to find the odd numbers in an array.

Solution:

num = [8,3,1,6,2,4,5,9]

count = 0

for i in range(len(num)):

 if(num[i]%2!=0):

 count = count+1

print("The number of odd numbers in the array are: ", count)

Question 191

Question:

Write a program to reverse a given upper case string in lower case.

Solution:

from functools import reduce

x = 5

print(reduce(lambda a,b: a*b, range(1, x+1), 1))

Output: 120 (factorial of 5)

842

def myfunc(x):

 return x[::-1].lower()

x = "JAVASCRIPT"

print(myfunc(x))

Question 192

Question:

Write a program to find the maximum of two numbers.

Solution:

def maximum(a, b):

 if a >= b:

 return a

 else:

 return b

a = 3

b = 5

print(maximum(a, b))

Solution:

import itertools

for i in itertools.count(start=10, step=1):

 print(i)

 if i > 15:

 break

Output:

10

11

12

13

14

15

16

import numpy as np

x = np.array([

[11, 12, 13, 14, 15],

[12, 13, 14, 15, 16]

])

print(x)

print(x * 6)

print(x + 5)

?

843

a = 3

b = 5

print(max(a, b))

Solution:

a = 3

b = 5

print(a if a >= b else b)

Question 193

Question:

Write a program to find the minimum of two numbers.

Solution:

def minimum(a, b):

 if a <= b:

 return a

 else:

 return b

from collections.abc import Iterator, Iterable

from types import GeneratorType

print(issubclass(GeneratorType, Iterator))

Output: True

print(issubclass(Iterator, Iterable))

Output: True
 A generator is an iterator

 An iterator is an iterable

x = [11, 11, 12, 13, 15, 18, 19, 35, 64]

y = x[2:5]

print(y)

Output: [12, 13, 15]

x[2] = 99

print(x)

Output: [11, 11, 99, 13, 15, 18, 19, 35, 64]

print(y)

Output: [12, 13, 15]

844

a = 3

b = 9

print(minimum(a, b))

Question 194

Question:

Write a program to calculate Profit or Loss.

Solution:

cp=float(input("Enter the Cost Price : "));

sp=float(input("Enter the Selling Price : "));

if cp==sp:

 print("No Profit or No Loss")

else:

 if sp>cp:

 print("Profit of ",sp-cp)

 else:

 print("Loss of ",cp-sp)

Question 195

Question:

Write a program to find Student Grade.

import itertools

i = 0

for x in itertools.cycle(['A', 'B', 'C']):

 print(x)

 i = i+1

 if i >= 4:

 break

print('')

Output:

A

B

C

A

x = [11, 12, 13, 14]

for i in x:

 print(i)

 if i == 12:

 x.remove(12)

print(x)

 # Output:

11

12

14

[11, 13, 14]

845

Solution:

physics = float(input(" Please enter Physics Marks: "))

math = float(input(" Please enter Math score: "))

chemistry = float(input(" Please enter Chemistry Marks: "))

total = physics + math + chemistry

percentage = (total / 300) * 100

print("Total Marks = %.2f" %total)

print("Percentage = %.2f" %percentage)

if(percentage >= 90):

 print("A Grade")

elif(percentage >= 80):

 print("B Grade")

elif(percentage >= 70):

 print("C Grade")

elif(percentage >= 60):

 print("D Grade")

elif(percentage >= 40):

 print("E Grade")

else:

 print("Fail")

x = 5

y = 100

print("X") if x > y else print("Y")

Output: Y

def myfunc():

 yield 24

 yield 48

 yield 64

x = myfunc()

print(type(x))

Output: <class 'generator'>

print(next(x))

Output: 24

print(next(x))

Output: 48

print(next(x))

Output: 64

846

Question 196

Question:

Write a program to print Even numbers from 1 to N.

Solution:

x = int(input(" Enter the Value of N : "))

for num in range(1, x+1):

 if(num % 2 == 0):

 print("{0}".format(num))

Question 197

Question:

Write a program to print Odd numbers from 1 to N.

Solution:

x = int(input(" Enter the Value of N : "))

for num in range(1, x+1):

 if(num % 2 != 0):

 print("{0}".format(num))

def myfunc():

 yield 24

 yield 48

 yield 64

x = myfunc()

print(type(x))

for i in x:

 print(i)

Output:

<class 'generator'>

24

48

64

847

Question 198

Question:

Write a program to compute sum of Even numbers from 1 to N.

Solution:

x = int(input(" Enter the Value of N : "))

total = 0

for num in range(1, x+1):

 if(num % 2 == 0):

 print("{0}".format(num))

 total = total + num

print("The Sum of Even Numbers from 1 to {0} is: {1}".format(num, total))

Question 199

Question:

Write a program to compute sum of Odd numbers from 1 to N.

Solution:

def myfunc(name):

 def x():

 print(f"Albert {name}")

 return x

y = myfunc("Einstein")

y()

Output: Albert Einstein

848

x = int(input(" Enter the Value of N : "))

total = 0

for num in range(1, x+1):

 if(num % 2 != 0):

 print("{0}".format(num))

 total = total + num

print("The Sum of Odd Numbers from 1 to {0} is: {1}".format(num, total))

Question 200

Question:

Write a program to check whether a character is Alphabet or not.

Solution:

ch = input("Enter a Character : ")

if((ch >= 'a' and ch <= 'z') or (ch >= 'A' and ch <= 'Z')):

 print(ch, "is an Alphabet.")

else:

 print(ch, "is Not an Alphabet.")

x = 21

y = 5

z = 35

if x > y and z > x:

 print("Both conditions are satisfied")

Output: Both conditions are satisfied

849

Question 201

Question:

Write a program to check whether a character is Alphabet or Digit or Special Character.

Solution:

ch = input("Enter a Character : ")

if((ch >= 'a' and ch <= 'z') or (ch >= 'A' and ch <= 'Z')):

 print(ch, "is an Alphabet.")

elif(ch >= '0' and ch <= '9'):

 print(ch, "is a Digit.")

else:

 print(ch, "is a Special Character.")

Question 202

Question:

Write a program to check whether a character is Lowercase or not.

Solution:

ch = input("Enter a Character : ")

say = print

say("Albert Einstein")

Output: Albert Einstein

850

if(ch.islower()):

 print(ch, "is a Lowercase character")

else:

 print(ch, "is Not a Lowercase character")

Question 203

Question:

Write a program to check whether a character is Uppercase or not.

Solution:

ch = input("Enter a Character : ")

if(ch.isupper()):

 print(ch, "is a Uppercase character")

else:

 print(ch, "is Not a Uppercase character")

Question 204

Question:

Write a program to check whether a character is Vowel or Consonant.

def myfunc():

 x = 2

 yield x

 x += 2

 yield x

 x += 2

 yield x

for i in myfunc():

 print(i)

Output:

2

4

6

851

Solution:

ch = input("Enter a Character : ")

if(ch == 'a' or ch == 'e' or ch == 'i' or ch == 'o' or ch == 'u' or ch == 'A'

 or ch == 'E' or ch == 'I' or ch == 'O' or ch == 'U'):

 print(ch, "is a Vowel")

else:

 print(ch, "is a Consonant")

Question 205

Question:

Write a program to convert string to Uppercase.

Solution:

str = input("Enter a String : ")

string = str.upper()

print("String in Lowercase = ", str)

print("String in Uppercase = ", string)

def myfunc():

 x = 1

 while True:

 yield x

 x += 1

for i in myfunc():

 print(i)

 if i >= 5:

 break

Output:

1

2

3

4

5

852

Question 206

Question:

Write a program to convert string to Lowercase.

Solution:

str = input("Enter a String : ")

string = str.lower()

print("String in Uppercase = ", str)

print("String in Lowercase = ", string)

Question 207

Question:

Write a program to convert Decimal to Binary, octal, and Hexadecimal.

Solution:

decimal = int(input("Enter a Decimal Number: "))

binary = bin(decimal)

def myfunc():

 i = 0

 i += 2

 return i

print(myfunc())

print(myfunc())

print(myfunc())

Output:

2

2

2

853

octal = oct(decimal)

hexadecimal = hex(decimal)

print(decimal, " Decimal Value = ", binary, "Binary Value")

print(decimal, " Decimal Value = ", octal, "Octal Value")

print(decimal, " Decimal Value = ", hexadecimal, "Hexadecimal Value")

Question 208

Question:

Write a program to check a Triangle is Valid or Not.

Solution:

a = int(input('Please Enter the First Angle of a Triangle: '))

b = int(input('Please Enter the Second Angle of a Triangle: '))

c = int(input('Please Enter the Third Angle of a Triangle: '))

total = a + b + c

if total == 180:

 print("\nThis is a Valid Triangle")

else:

 print("\nThis is an Invalid Triangle")

i = 0

while True:

 i += 1

 print(i)

 if i > 0:

 break

Output:

1

854

Question 209

Question:

Write a program that inputs an age and print age after 20 years .

Solution:

age = int(input("What is your age? "))

print("In twenty years, you will be", age + 20, "years old!")

Question 210

Question:

Write a program to print the number of seconds in year.

Solution:

days=365

hours=24

minutes=60

seconds=60

print("Number of seconds in a year : ",days*hours*minutes*seconds)

x = [11, 12, 13, 14]

for i in x[:]:

 print(i)

 if i == 12:

 x.remove(12)

print(x)
Output:

11

12

13

14

[11, 13, 14]

855

Question 211

Question:

Write a program that inputs a string and then prints it equal to number of times its

length.

Solution:

str = input("Enter string: ")

b = len(str)

a = str * b

print(a)

Question 212

Question:

Write a program to convert a given list of strings and characters to a single list of

characters.

Solution:

def myfunc(x):

 result = [i for y in x for i in y]

 return result

i = 0

def myfunc():

 global i

 i += 1

 return i

print(myfunc())

print(myfunc())

print(myfunc())

Output:

1

2

3

856

x = ["alan", "john", "w", "p", "james", "q"]

print(myfunc(x))

x = 22

y = 5

z = 73

if x > y or x > z:

 print("At least one of the conditions is satisfied")

Output: At least one of the conditions is satisfied

x = 1

while x < 8:

 print(x)

 if (x == 3):

 break

 x = x+1

Output:

0

1

2

3

x = 0

while x < 8:

 x = x+1

 if (x == 3):

 continue

 print(x)

1

2

4

5

6

7

8

Output

857

say = print

def mult(x, y):

 return x * y

product = mult

say(product(6, 6))

Output: 36

import numpy as np

x = np.array([[2, 4, 6], [8, 10, 12]])

y = np.array([[3, 6, 12], [15, 18, 21]])

print(x)

print(y)

print(x*y)

Output:

[[2 4 6]

 [8 10 12]]

Output:

[[3 6 12]

 [15 18 21]]

Output:

[[6 24 72]

 [120 180 252]]

import numpy as np

x = np.array([11, 11, 12, 13, 15, 18, 23, 31, 65])

print(x)

Output: [11 11 12 13 15 18 23 31 65]

print(x[4])

Output: 15

print(x[2:5])

Output: [12 13 15]

858

print(np.multiply(x, y))

Output:

[[6 24 72]

 [120 180 252]]

import numpy as np

x = np.array([True, True, False])

print(x.dtype)

Output: bool

print(x)

Output: [True True False]

import numpy as np

x = np.array(['Albert', 'James', 'Mary', 'Einstein', 'Bob'])

print(x)

Output: ['Albert' 'James' 'Mary' 'Einstein' 'Bob']

print(np.vectorize(len)(x))

Output: [6 5 4 8 3]

def myfunc():

 return 26

print(myfunc())

print(myfunc())

print(myfunc())

Output:

26

26

26

859

a = ['pqrs', 'wxyz']

print(a)

Output: ['pqrs', 'wxyz']

print(a[0:1])

Output: ['pqrs']

print(a[0])

Output: pqrs

print(a[0][0])

Output: p

print(a[0][1])

Output: q

print(a[0][0:2])

Output: pq

def myfunc():

 return 26

 return 27

 return 28

print(myfunc())

print(myfunc())

print(myfunc())

Output:

26

26

26

import numpy as np

x = np.array(['Albert', 'James', 'Mary', 'Einstein', 'Bob'])

print([(len(i), i) for i in x])

Output: [(6, 'Albert'), (5, 'James'), (4, 'Mary'), (8, 'Einstein'), (3, 'Bob')]

import multiprocessing as mp

print(mp.cpu_count()) # Multiprocess CPU count

Output: 4

860

x = complex(5, 6)

print(x)

Output: (5+6j)

print(x.real)

Output: 5.0

print(x.imag)

Output: 6.0

print((-1) ** 0.5)

Output: (6.123233995736766e-17+1j)

print(complex(0, 1))

Output: 1j

print(complex(0, 1) ** 2)

Output: (-1+0j)

def f(x, y = []):

 y.append(x)

 return y

print(f(11))

print(f(12))

print(f(13))

Output:

[11]

[11, 12]

[11, 12, 13]

def f(x, y = None):

 if y == None:

 y = []

 y.append(x)

 return y

print(f(11))

print(f(12))

print(f(13))

Output:

[11]

[12]

[13]

861

x = 59

def f():

 print(x)

f()

Output: 59

import pandas

x = pandas.Series([11, 11, 12, 13, 15, 18])

print(x)

print(x.values)

Output: [11 11 12 13 15 18]

print(x.sum())

Output: 80

print(x.count())

Output: 6

print(x.mean())

Output: 13.333333333333334

print(x.median())

Output: 12.5

print(x.std())

Output: 2.7325202042558927

Output:

0 11

1 11

2 12

3 13

4 15

5 18

dtype: int64

862

import numpy as np

x = np.array([112], 'uint8')

print(x.dtype)

Output: uint8

print(x)

Output: [112]

x[0] += 1

print(x)

Output: [113]

x[0]-=1

print(x)

Output: [112]

x[0]= 126

print(x)

Output: [126]

x[0]+=1

print(x)

Output: [127]

import numpy as np

x = np.array([11, 12, 13])

y = np.array([14, 15, 16])

z = np.array([17, 18, 19])

print(x)

Output: [11 12 13]

print(y)

Output: [14 15 16]

print(z)

Output: [17 18 19]

w = np.hstack([x, y])

print(w)

Output: [11 12 13 14 15 16]

q = np.hstack([w, z])

print(q)

Output: [11 12 13 14 15 16 17 18 19]

for _ in range(10):

 print('Albert')

?

863

for i in [1, 2, 3]:

 print(i)

 print('Albert' * i)

1

Albert

2

AlbertAlbert

3

AlbertAlbertAlbert
Output:

print(6, type(6))

Output: 6 <class 'int'>

print(6.8, type(6.8))

Output: 6.8 <class 'float'>

print(-6.8, type(-6.8))

Output: -6.8 <class 'float'>

print([], type([]))

Output: [] <class 'list'>

print(False, type(False))

Output: False <class 'bool'>

print(None, type(None))

Output: None <class 'NoneType'>

a = 0

b = 1

for i in [2, 4, 8]:

 a = a + b*i

 b = b + 1

print(a)

Output: 34

def x(i):

 return 5*i

b = 3

print(x(b) + x(3*b-1))

Output: 55

864

print('str: {}, int: {}, formatted float: {:.3f}.'.format('Bob', 53, 6.1687))

str: Bob, int: 53, formatted float: 6.169.

865

print(format(.1, '.20f'))

Output: 0.10000000000000000555

print(format(.2, '.20f'))

Output: 0.20000000000000001110

print(format(.1 + .2, '.20f'))

Output: 0.30000000000000004441

print(format(.3, '.20f'))

Output: 0.29999999999999998890

Image processing refers to the use of algorithms and techniques to analyze, transform, enhance, and manipulate digital images.
It involves the application of various mathematical and computational methods to extract useful information from an image,
correct image defects, and create new images. Image processing techniques can be used for a wide range of applications,
including medical imaging, remote sensing, surveillance, computer vision, and digital photography. Some common tasks
performed by image processing algorithms include:

• Image filtering: This involves the removal of noise, enhancement of image features, and smoothing of edges.

• Image segmentation: This involves dividing an image into meaningful regions, based on properties such as color,
texture, and intensity.

• Image compression: This involves reducing the size of an image while preserving its quality, to save storage space
and reduce transmission time.

• Image recognition: This involves the automatic identification of objects, patterns, and features in an image, using
machine learning and computer vision techniques.

• Image restoration: This involves the recovery of lost or damaged image information, such as removing scratches,
stains, and other defects.

Overall, image processing plays an important role in many fields, enabling researchers and professionals to extract valuable
insights and information from digital images.

LINUX − OVERVIEW

Linux is a free and open-source operating system that has many advantages over proprietary

operating systems like Windows and macOS. Here are some of the main advantages of Linux:

Linux is an operating system that is free and open-source and is based on the Unix system. It

was first released in 1991 by Linus Torvalds and has since become one of the most widely

used operating systems in the world, powering everything from mobile devices to

supercomputers. Linux is renowned for its dependability, flexibility, and safety. It is highly

customizable and can be used for a wide range of applications, from servers and

supercomputers to desktops and laptops. Linux distributions, or "distros", are created by

different organizations and individuals to cater to different needs and use cases. One of the

key features of Linux is its command-line interface, which allows users to interact with the

system using text commands. This can be daunting for new users, but it offers a high degree

of control and customization that is not available in other operating systems. Many Linux

distros also come with graphical user interfaces (GUIs) that make it easier for beginners to

use. Another key feature of Linux is its package management system, which allows users to

easily install and manage software packages from online repositories. This makes it easy to

keep the system up-to-date and install new software. Linux is also known for its security

features, including built-in firewalls, encryption, and permission-based access control. This

makes it a popular choice for servers and other applications where security is a top priority.

Overall, Linux is a powerful and flexible operating system that offers many advantages over

other operating systems. While it can be challenging to learn at first, it offers a high degree of

control and customization that is not available in other operating systems, which makes it an

appealing option for programmers, system administrators, and other power users.

866

• Cost: Linux is free to use and distribute, which makes it a cost-effective option for both

personal and business use. You don't need to purchase a license or pay for updates, which

can save a significant amount of money over time.

• Flexibility: Linux is highly customizable and can be tailored to meet the specific needs

of users. This allows users to create a personalized computing environment that suits their

workflow and preferences.

• Stability: Linux is renowned for its dependability and durability. It rarely crashes or

freezes, and is not vulnerable to viruses or malware as Windows is. This makes it an ideal

choice for mission-critical applications and servers.

• Security: Linux is more secure than other operating systems because of its built-in

security features, such as secure boot, firewall, and file permissions. Additionally, since

Linux is open-source, security experts around the world can contribute to identifying and

fixing vulnerabilities, making it more secure than proprietary operating systems.

• Performance: Linux is renowned for its quick responsiveness and little resource needs.

It can run on older hardware and doesn't require high-end hardware to run smoothly.

• Open-source community: Linux has a large and active community of developers and

users who contribute to its development and support. This means that there is a wealth of

online resources, documentation, and forums available to help users solve problems and

get the most out of Linux.

• Compatibility: Linux is compatible with a wide range of hardware, making it a versatile

choice for users who have older or specialized hardware.

• Free software: Linux comes with a wide range of free and open-source software,

including productivity tools, media players, and development tools. This means that users

can save money on software licenses and have access to high-quality software for free.

Overall, Linux is a powerful, customizable, and cost-effective operating system that offers many

advantages over proprietary operating systems. It's an ideal choice for users who value

performance, stability, security, and flexibility in their computing environment. While Linux has

many advantages, there are also some disadvantages to using it. Here are some of the main disadvantages

of Linux:

867

• Lack of user-friendly interface: While the command-line interface of Linux provides

greater control and flexibility, it can be difficult for beginners to use. The graphical user

interface of some Linux distributions may also be less polished and intuitive than those of

Windows or macOS.

• Limited software availability: While there is a wide range of software available for

Linux, it can still be more limited than what is available for Windows or macOS. Some

specialized software, such as Adobe Photoshop or Microsoft Office, may not be available

for Linux.

• Compatibility issues: Linux may not be compatible with all hardware or software. This

can be especially problematic for users who need to use specific hardware or software for

their work or hobbies.

• Fragmentation: The open-source nature of Linux means that there are many different

distributions and versions available. This can lead to fragmentation in the community and

make it more difficult for users to find support or find the right distribution for their

needs.

• Learning curve: Because Linux is different from Windows and macOS, there can be a

steep learning curve for new users. Users may need to learn new commands and methods

for accomplishing tasks that are familiar on other operating systems.

• Lack of professional support: While there are many online resources and forums

available to help Linux users, there may be a lack of professional support options for

users who need more advanced help or support.

• Gaming support: While gaming on Linux has improved significantly in recent years, it

still lags behind Windows in terms of support and compatibility for many games.

• Security: While Linux is generally considered to be more secure than Windows, it is not

immune to security vulnerabilities or malware. Linux users must still take appropriate

security precautions to protect their systems.

Overall, Linux can be a great operating system for many users, but it may not be the best fit for

everyone. It's important to carefully consider the advantages and disadvantages of Linux before

deciding whether to use it.

868

Here are some funny facts about Linux:

 The original name for Linux was "Freax", which was a combination of "free", "freak",

and "Unix". The name was changed to Linux by the creator of the kernel, Linus Torvalds.

 The Linux mascot is a penguin named Tux. The original concept art for Tux was created

by Larry Ewing in 1996.

 The first ever recorded message sent from space to Earth was sent using Linux. The

message was sent by astronaut David A. Wolf, who used a laptop running Linux to send

the message to Mission Control.

 There is a Linux distribution called "Gentoo" that is designed to be compiled from

source code by the user. This can take hours or even days, but it allows for a highly

customized and optimized system.

 The creator of Linux, Linus Torvalds, once said that he named his kernel "Linux"

because it sounded better than "Freax" and because he wanted to "annoy" the creator of

the Unix operating system, which he was inspired by.

 In 2012, a group of programmers from the Netherlands created a fully functioning car

that was powered by Linux. The car was named "Edison", and it was able to drive up to

60 miles per hour.

 There is a Linux distribution called "Damn Small Linux" that can fit on a business card-

sized CD-ROM.

 In 2016, the Linux kernel reached over 20 million lines of code, making it one of the

largest software projects in the world.

 The operating system on the International Space Station (ISS) is based on Linux.

 The Linux operating system has been used to power everything from smartphones and

tablets to supercomputers and servers. It's even used to power the majority of the world's

top 500 supercomputers.

869

C − OVERVIEW

C programming is a popular programming language that was first developed by Dennis

Ritchie at Bell Labs in 1972. C is a general-purpose programming language that is widely

used for developing operating systems, system software, and embedded systems, as well as

applications in various fields such as finance, engineering, and gaming. Here are some key

features of the C programming language:

• Simple and easy to learn: C has a simple and concise syntax, making it easy for beginners

to learn and use.

• Portable: C code can be compiled and run on different platforms, including Windows,

macOS, Linux, and embedded systems.

• Low-level programming: C allows programmers to write code that interacts directly with

hardware and memory, making it ideal for developing system software and drivers.

• Fast and efficient: C is a fast and efficient programming language that can be used to

develop high-performance applications.

• Modular programming: C supports modular programming, allowing programmers to

divide code into smaller, more manageable functions and modules.

• Standard library: C comes with a standard library of functions that provide commonly

used functionality, such as input/output, string handling, and mathematical operations.

• Pointers: C allows programmers to work with pointers, which are memory addresses that

point to specific data in memory. Pointers are a powerful feature of C that allow for more

efficient memory management and manipulation.

• Preprocessor directives: C includes preprocessor directives, which are special statements

that are processed by the compiler before the code is compiled. Preprocessor directives are

used to define constants, include header files, and perform other tasks.

Overall, C is a powerful and versatile programming language that is widely used for

developing a variety of applications, including system software, embedded systems, and high-

performance applications. It is a well-liked choice among developers worldwide because of its

portability, effectiveness, and simplicity.

870

Here's an example of a "Hello, World!" program in C:

Explanation:

• #include<stdio.h> − This line includes the standard input and output library, which

contains the printf() function used to display output.

• int main() − This line defines the main() function, which is the entry point of the

program.

• {} − The curly braces contain the code that will be executed when the program runs.

• printf("Hello, World!\n"); − This line uses the printf() function to display the

text "Hello, World!" to the console. The \n is a special character that represents a

newline, so the text will be displayed on a new line.

• return 0; − This line returns a value of 0 from the main() function, indicating that

the program executed successfully.

#include<stdio.h>

int main() {

printf("Hello, World!\n");

return 0;

}

When you run this program, it will display the text "Hello, World!" on the console. This program

is often used as a simple test to make sure that a new programming environment is set up correctly.

871

In C programming language, comments are used to explain the code and make it more readable

for other developers. Comments are ignored by the compiler and do not affect the functionality

of the code. There are two types of comments in C: single-line comments and multi-line

comments.

 Single-line comments start with two forward slashes (//) and continue until the end of

the line. For example:

 Multi-line comments start with /* and end with */. Everything between these two symbols is

considered a comment. For example:

Comments are important for making the code more understandable and easier to maintain. They

can also be used to temporarily remove a section of code during testing or debugging. For

example:

In the above example, the line that calls the function someFunction() has been commented out

for testing purposes. This allows the developer to test the rest of the code without the potentially

// This is a single-line comment

int x = 5; // This line initializes the variable x to 5

/*

This is a multi-line comment

It can span multiple lines

*/

int y = 10; /* This line initializes the variable y to 10 */

// int z = someFunction(); // This line is temporarily commented out for testing purposes

int a = 10; // This line initializes the variable a to 10

872

problematic function call. Once the testing is complete, the comment can be removed and the

code will work as intended.

In C programming language, a variable is a named memory location that stores a value of a

specific data type. The value of a variable can be changed during program execution. Variables

are declared with a data type, a name, and an optional initial value. Here are some examples of

variable declarations in C:

In the above examples, int, float, and char are data types in C. The variable x is declared

without an initial value, while y and z are declared with initial values. Variables can be assigned

new values using the assignment operator (=). For example:

Variables can also be used in expressions. For example:

In the above example, the variables a and b are used in an expression to calculate the value of the

variable c. In C, variables have a scope, which defines the parts of the program where the

int x; // declares an integer variable named x

float y = 3.14; // declares a floating-point variable named y and initializes it to 3.14

char z = 'A'; // declares a character variable named z and initializes it to 'A'

x = 5; // assigns the value 5 to the variable x

y = 2.5; // assigns the value 2.5 to the variable y

z = 'B'; // assigns the value 'B' to the variable z

int a = 10;

int b = 5;

int c = a + b; // assigns the value 15 to the variable c

873

variable can be accessed. Variables declared inside a function have local scope, which means

they can only be accessed within that function. Variables declared outside of any function have

global scope, which means they can be accessed from any part of the program. To sum up,

variables in C are named memory locations that store values of specific data types. They can be

declared with or without initial values, assigned new values, and used in expressions.

Understanding variables is essential for writing C programs.

In C programming language, data types specify the type of data that can be stored in a variable.

The format specifiers are used to indicate the type of data being printed or scanned in

input/output operations. Here are the commonly used data types and format specifiers in C:

Data Types:

 int: used to store integer values

 float: used to store floating-point values

 double: used to store double-precision floating-point values

 char: used to store a single character

 bool: used to store boolean values (true or false)

 short: used to store small integer values

 long: used to store large integer values

 long long: used to store very large integer values

Format Specifiers:

 %d: used to print or scan integer values

 %f: used to print or scan floating-point values

 %lf: used to print or scan double-precision floating-point values

 %c: used to print or scan a single character

 %s: used to print or scan a string of characters

 %u: used to print or scan unsigned integer values

 %ld: used to print or scan long integer values

 %lld: used to print or scan very long integer values

874

 %x: used to print or scan hexadecimal values

Here are some examples of using data types and format specifiers in C:

In the above example, the int, float, and char data types are used to declare variables x, y, and

z. The %d, %f, and %c format specifiers are used to print or scan these variables. The scanf

function is used to scan input from the user, and the printf function is used to print output to

the screen. Understanding data types and format specifiers is essential for working with variables

and input or output operations in C.

#include<stdio.h>

int main() {

int x = 10;

float y = 3.14;

char z = 'A';

printf("The value of x is %d\n", x);

printf("The value of y is %f\n", y);

printf("The value of z is %c\n", z);

scanf("%d", &x);

scanf("%f", &y);

scanf("%c", &z);

printf("You entered %d\n", x);

printf("You entered %f\n", y);

printf("You entered %c\n", z);

return 0;

}

875

In C programming language, a constant is a value that cannot be changed during program

execution. Constants are typically used to represent fixed values that are used in a program.

Constants can be of different data types, such as integer, floating-point, character, and boolean.

Here are some examples of defining constants in C:

In the above examples, #define, const, and enum are used to define constants in C. #define is

a preprocessor directive that defines a constant value that can be used throughout the program.

const is a keyword that defines a constant variable that cannot be modified. enum is a keyword

that defines a set of named integer constants. Here are some examples of using constants in C:

#define PI 3.14159 // defines a constant PI with the value 3.14159

const int MAX = 100; // defines a constant MAX with the value 100

enum { FALSE, TRUE } BOOL; // defines boolean constants FALSE and TRUE

#include<stdio.h>

#define PI 3.14159

const int MAX = 100;

int main() {

float radius = 5.0;

float circumference = 2 * PI * radius;

int count = MAX;

printf("The circumference of the circle is %f\n", circumference);

printf("The maximum count is %d\n", count);

return 0;

}

876

In the above example, the constant PI is used to calculate the circumference of a circle, and the

constant MAX is used to set the maximum count. By using constants instead of hard-coded values,

the program becomes more readable and easier to maintain. Constants in C are typically defined

at the beginning of a program or in a separate header file. By convention, constant names are

written in uppercase letters to distinguish them from variables. Overall, constants in C are values

that cannot be changed during program execution. They can be defined using #define, const,

or enum, and are typically used to represent fixed values in a program. Understanding constants

is essential for writing C programs that are readable and maintainable.

In C programming language, a string is a sequence of characters stored in a contiguous

memory location. Strings in C are represented as arrays of characters, terminated by a null

character '\0'. Here is an example of a string in C:

In this example, the string "Hello, World!" is stored in the array str. The null character '\0' is

automatically added to the end of the string to indicate its termination. Strings in C can be

manipulated using various string functions, such as strlen(), strcpy(), and strcat(). Here

are some examples of using string functions in C:

char str[] = "Hello, World!";

#include<stdio.h>

#include<string.h>

int main() {

char str1[] = "Hello";

char str2[] = "World";

char buffer[50];

// find the length of a string

printf("The length of %s is %d\n", str1, strlen(str1));

877

In this example, the strlen() function is used to find the length of a string, the strcpy() and

strcat() functions are used to concatenate two strings, and the strcmp() function is used to

compare two strings. C also provides various ways to input and output strings. The scanf()

function is used to input strings from the standard input, while the printf() function is used to

output strings to the standard output. Here is an example of using scanf() and printf() to

input and output strings:

// concatenate two strings

strcpy(buffer, str1);

strcat(buffer, " ");

strcat(buffer, str2);

printf("The concatenated string is %s\n", buffer);

// compare two strings

if (strcmp(str1, str2) == 0) {

 printf("%s and %s are equal\n", str1, str2);

} else {

 printf("%s and %s are not equal\n", str1, str2);

}

return 0;

}

#include<stdio.h>

int main() {

char name[50];

printf("Enter your name: ");

scanf("%s", name);

printf("Hello, %s!\n", name);

return 0;

}

878

In this example, the scanf() function is used to input a string from the standard input and store

it in the array name, while the printf() function is used to output a greeting message that

includes the input string. To sum up, strings in C are represented as arrays of characters

terminated by a null character '\0'. String functions can be used to manipulate strings, and various

ways to input and output strings are available in C. Understanding strings is essential for writing

C programs that deal with text data.

In C programming, operators are symbols that represent actions or computations. They allow

you to perform mathematical or logical operations on one or more operands. Here are the most

commonly used operators in C:

1. Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numeric operands.

These include:

 Addition (+): Adds two operands

 Subtraction (-): Subtracts the second operand from the first operand

 Multiplication (*): Multiplies two operands

 Division (/): Divides the first operand by the second operand

 Modulus (%): Returns the remainder of a division operation

Example:

2. Assignment Operators

int a = 5, b = 2, c;

c = a + b; // c is now 7

c = a - b; // c is now 3

c = a * b; // c is now 10

c = a / b; // c is now 2

c = a % b; // c is now 1

879

Assignment operators are used to assign values to variables. These include:

 Assignment (=): Assigns the value of the right operand to the left

operand

 Addition assignment (+=): Adds the value of the right operand to the

left operand and assigns the result to the left operand

 Subtraction assignment (-=): Subtracts the value of the right operand

from the left operand and assigns the result to the left operand

 Multiplication assignment (*=): Multiplies the left operand by the right

operand and assigns the result to the left operand

 Division assignment (/=): Divides the left operand by the right operand

and assigns the result to the left operand

 Modulus assignment (%=): Calculates the remainder of the left operand

divided by the right operand and assigns the result to the left operand

Example:

3. Comparison Operators

Comparison operators are used to compare two values. They return a Boolean value (true

or false). These include:

 Equal to (==): Returns true if the operands are equal

 Not equal to (!=): Returns true if the operands are not equal

 Greater than (>): Returns true if the first operand is greater than the

second operand

 Less than (<): Returns true if the first operand is less than the second

operand

int a = 5, b = 2;

a += b; // a is now 7

a -= b; // a is now 5 again

a *= b; // a is now 10

a /= b; // a is now 5 again

a %= b; // a is now 1

880

 Greater than or equal to (>=): Returns true if the first operand is

greater than or equal to the second operand

 Less than or equal to (<=): Returns true if the first operand is less

than or equal to the second operand

Example:

4. Logical Operators

Logical operators are used to combine multiple conditions. They return a Boolean value

(true or false). These include:

 AND (&&): Returns true if both operands are true

Example:

int a = 5, b = 2;

if (a == b) {

 printf("a is equal to b\n");

} else {

 printf("a is not equal to b\n");

}

if (a > b) {

 printf("a is greater than b\n");

}

if (a < b) {

 printf("a is less than b\n");

}

int a = 5, b = 2;

if (a > 0 && b > 0) {

 printf("Both a and b are positive\n");

}

881

In this example, the condition inside the if statement will be true only if both a and b are

greater than 0.

 OR (||): Returns true if either operand is true

Example:

In this example, the condition inside the if statement will be true if either a or b is

greater than 0.

 NOT (!): Returns the opposite of the operand's value

Example:

In this example, the condition inside the if statement will be true only if a is not greater

than b. The NOT operator reverses the result of the comparison operator (>), so if a is not

greater than b, the NOT operator will return true.

We can also combine multiple logical operators to form complex conditions. For

example:

int a = 5, b = 2;

if (a > 0 || b > 0) {

 printf("At least one of a and b is positive\n");

}

int a = 5, b = 2;

if (!(a > b)) {

 printf("a is not greater than b\n");

}

int a = 5, b = 2, c = 7;

if (a > 0 && b > 0 || c > 0) {

 printf("At least one of a and b is positive or c is positive\n");

}

882

In this example, the condition inside the if statement will be true if either a or b is

greater than 0, or if c is greater than 0. The AND operator has higher precedence than the

OR operator, so the condition inside the parentheses is evaluated first.

C language does not have a built-in Boolean data type. However, C99 introduced a new data

type called _Bool (or bool) which can be used to represent Boolean values. Additionally, the

header file stdbool.h provides a macro bool which can be used instead of _Bool. Here is an

example of using bool in C:

In this example, we have defined two Boolean variables a and b. The values of these variables

are assigned using the keywords true and false, which are defined in the stdbool.h header

file. We then use these variables in an if statement, where we use the "&&" (AND) operator and

the "!"(NOT) operator to create a Boolean expression.

The output of this program will be:

#include<stdbool.h>

#include<stdio.h>

int main() {

bool a = true;

bool b = false;

if (a && !b) {

 printf("a is true and b is false\n");

 }

return 0;

}

883

Note that any nonzero value is considered to be true in C, while the value 0 is considered to be

false. Therefore, you can also use integers to represent Boolean values in C:

In this example, we have defined two integer variables a and b. We then use these variables in an

if statement to create a Boolean expression. Since a is nonzero and b is 0, the expression

evaluates to true and the message is printed. However, this approach can be less clear and more

error-prone than using bool variables, especially in more complex programs.

a is true and b is false

#include <stdio.h>

int main() {

int a = 1;

int b = 0;

if (a && !b) {

 printf("a is true and b is false\n");

 }

 return 0;

}

"Any fool can write code that a computer can understand. Good

programmers write code that humans can understand."

― Martin Fowler

884

C program to add two numbers:

Here's how the program works:

• First, we include the standard input and output library header file stdio.h.

• We declare three integer variables num1, num2, and sum.

• We prompt the user to enter two numbers to add using the printf function.

• We use the scanf function to read in the two numbers entered by the user and store them

in the variables num1 and num2.

• We add the two numbers together and store the result in the variable sum.

• Finally, we use the printf function again to print out the sum of the two numbers.

#include<stdio.h>

int main() {

int num1, num2, sum;

printf("Enter two numbers to add:\n");

scanf("%d%d", &num1, &num2);

sum = num1 + num2;

printf("The sum of %d and %d is %d\n", num1, num2, sum);

return 0;

}

When the program runs, it will prompt the user to enter two numbers to add. After the user enters

the numbers, the program will add them together and display the result.

885

C program to check whether a number is even or odd:

Here's how the program works:

• First, we include the standard input and output library header file stdio.h.

• We declare an integer variable num.

• We prompt the user to enter an integer using the printf function.

• We use the scanf function to read in the integer entered by the user and store it in the

variable num.

• We use an if-else statement to check if num is even or odd. The % operator is used to find

the remainder of num divided by 2. If the remainder is 0, then num is even, and the

program will print out a message saying so. If the remainder is not 0, then num is odd, and

the program will print out a message saying so.

• Finally, we use the return statement to exit the program.

#include<stdio.h>

int main() {

int num;

printf("Enter an integer:\n");

scanf("%d", &num);

if (num % 2 == 0) {

printf("%d is even\n", num);

} else {

printf("%d is odd\n", num);

}

return 0;

}

886

C program to print "Hello World" 10 times on the console screen:

Here's how the program works:

• First, we include the standard input and output library header file stdio.h.

• We declare an integer variable i.

• We use a for loop to print "Hello World" ten times. The loop runs from i = 0 to i <

10, incrementing i by 1 each time the loop runs. Inside the loop, we use the printf

function to print "Hello World" to the screen.

• Finally, we use the return statement to exit the program.

When the program runs, it will prompt the user to enter an integer. After the user enters the integer,

the program will check if it's even or odd and display a message accordingly.

#include<stdio.h>

int main() {

int i;

for (i = 0; i < 10; i++) {

printf("Hello World\n");

}

return 0;

}

When the program runs, it will print "Hello World" ten times to the screen. The for loop allows

us to repeat the printing of "Hello World" multiple times without having to write out the same

printf statement multiple times.

887

Here's how the program works:

• First, we include the standard input and output library header file stdio.h.

• We declare an integer variable i and initialize it to 0.

• We use a while loop to print "Hello World" ten times. The loop runs as long as i is less

than 10. Inside the loop, we use the printf function to print "Hello World" to the screen

and then increment i by 1.

• Finally, we use the return statement to exit the program.

#include<stdio.h>

int main() {

int i = 0;

while (i < 10) {

printf("Hello World\n");

i++;

}

return 0;

}

When the program runs, it will print "Hello World" ten times to the screen using the while

loop. The while loop is another way to repeat a set of statements multiple times, as long as

the condition specified in the loop header is true. In this case, the loop runs as long as i is

less than 10, allowing us to print "Hello World" ten times without having to write out the

same printf statement multiple times.

888

Here's how the program works:

• First, we include the standard input and output library header file stdio.h.

• We declare an integer variable i and initialize it to 0.

• We use a do-while loop to print "Hello World" ten times. The loop runs at least once,

even if the condition in the loop header is false. Inside the loop, we use the printf

function to print "Hello World" to the screen and then increment i by 1.

• The loop condition is checked at the end of each iteration of the loop. If the condition is

true, the loop continues to run, and if the condition is false, the loop exits.

• Finally, we use the return statement to exit the program.

#include<stdio.h>

int main() {

int i = 0;

do {

printf("Hello World\n");

i++;

} while (i < 10);

return 0;

}

When the program runs, it will print "Hello World" ten times to the screen using the do-while

loop. The do-while loop is another way to repeat a set of statements multiple times, but it

guarantees that the loop body will be executed at least once, even if the loop condition is false. In

this case, the loop runs as long as i is less than 10, allowing us to print "Hello World" ten times

without having to write out the same printf statement multiple times.

889

In C programming language, switch statement is used to execute a block of code depending

on the value of an expression. The switch statement works by evaluating the expression and

then executing the code associated with the matching case label. If no case label matches the

value of the expression, then the default code block is executed.

Here's an example of how to use switch statement in C:

#include<stdio.h>

int main() {

char operator;

int operand1, operand2, result;

printf("Enter an operator (+, -, *, /): ");

scanf("%c", &operator);

printf("Enter two operands: ");

scanf("%d %d", &operand1, &operand2);

switch(operator) {

 case '+':

 result = operand1 + operand2;

 printf("%d + %d = %d\n", operand1, operand2, result);

 break;

 case '-':

 result = operand1 - operand2;

 printf("%d - %d = %d\n", operand1, operand2, result);

 break;

 case '*':

 result = operand1 * operand2;

 printf("%d * %d = %d\n", operand1, operand2, result);

 break;

 case '/':

 if(operand2 == 0) {

 printf("Error: Cannot divide by zero\n");

890

In this example, the program asks the user to enter an operator (+, -, *, /) and two operands.

The program then uses a switch statement to perform the appropriate arithmetic operation based

on the operator entered by the user. If an invalid operator is entered, the program displays an

error message. The switch statement begins with the expression operator which is evaluated to

determine which case label matches. The case labels +, -, *, and / are associated with the

appropriate arithmetic operations. The default label is used to handle any case where the

expression does not match any of the other case labels. Each case label contains a block of code

that is executed when the expression matches that label. The break statement is used to exit the

switch statement after the matching case label is executed. In this example, if the user enters

the operator +, the block of code associated with the case '+' label is executed. This block of code

adds the two operands and displays the result. Similarly, the other arithmetic operations are

handled by their respective case labels. If an invalid operator is entered, the default label is

executed, displaying an error message. Overall, the switch statement provides a convenient way

to perform different actions based on the value of a single expression, making it a useful

construct in many C programs.

} else {

 result = operand1 / operand2;

 printf("%d / %d = %d\n", operand1, operand2, result);

 }

 break;

 default:

 printf("Error: Invalid operator\n");

 break;

 }

return 0;

}

891

In C programming language, break and continue are two control flow statements that are

used to modify the execution of loops (such as for, while, and do-while loops) and switch

statements. break statement is used to terminate the execution of the loop or switch statement

immediately. When a break statement is encountered, the control is transferred to the next

statement after the loop or switch statement. Here is an example:

In this example, the program uses a for loop to print the values of i from 1 to 10. However,

when i equals 5, the break statement is executed, and the loop is terminated immediately.

Therefore, the program only prints the values of i from 1 to 4, and the loop does not complete.

On the other hand, the continue statement is used to skip the current iteration of the loop and

move to the next iteration. When a continue statement is encountered, the control is transferred

to the next iteration of the loop. Here is an example:

#include<stdio.h>

int main() {

int i;

for(i = 1; i <= 10; i++) {

 if(i == 5) {

 break;

 }

printf("%d\n", i);

}

return 0;

}

#include <stdio.h>

int main() {

int i;

for(i = 1; i <= 10; i++) {

 if(i == 5) {

 continue;

892

In this example, the program uses a for loop to print the values of i from 1 to 10. However,

when i equals 5, the continue statement is executed, and the current iteration of the loop is

skipped. Therefore, the program does not print the value 5, but continues with the next iterations

and prints the other values. Both break and continue statements are useful for controlling the

flow of execution in loops and switch statements, allowing programs to skip certain iterations or

terminate the loop altogether based on certain conditions.

In C programming language, an array is a collection of elements of the same data type, stored

in contiguous memory locations. Arrays are a powerful and efficient way to store and manipulate

large amounts of data in C programs. Here is an example of how to use arrays in C:

}

 printf("%d\n", i);

 }

 return 0;

}

#include<stdio.h>

int main() {

int numbers[5]; // declare an array of 5 integers

int i;

 // initialize the array elements

 numbers[0] = 1;

 numbers[1] = 3;

 numbers[2] = 5;

 numbers[3] = 7;

 numbers[4] = 9;

893

In this example, an array named numbers is declared, which can store up to 5 integers. The

elements of the array are accessed using an index, starting from 0. In this case, the elements of

the array are initialized with the values 1, 3, 5, 7, and 9. To access an element of the array, we

can use its index as shown in the for loop. In this loop, we print the array elements using the

printf statement, with the %d format specifier indicating that we are printing an integer.

Another way to initialize an array is to use an initializer list, which allows you to specify the

values of the array elements at the time of declaration. Here is an example:

In this example, the array numbers is declared and initialized using an initializer list. The size of

the array is automatically determined by the number of elements in the list. The output of this

program is the same as the previous example. Arrays are a fundamental data structure in C, and

// print the array elements

for(i = 0; i < 5; i++) {

 printf("%d ", numbers[i]);

 }

return 0;

}

#include<stdio.h>

int main() {

int numbers[] = {1, 3, 5, 7, 9}; // declare and initialize an array

int i;

// print the array elements

for(i = 0; i < 5; i++) {

 printf("%d ", numbers[i]);

}

return 0;

}

894

their simplicity and efficiency make them a popular choice for many programming tasks. They

are widely used in applications such as sorting, searching, and data processing, among others.

In C programming language, a structure is a collection of variables of different data types,

grouped together under a single name. Structures are used to represent complex data types and

can be used to organize and manipulate large amounts of data in C programs. Here is an example

of how to use structures in C:

#include<stdio.h>

// define a structure named "student"

struct student {

 char name[50];

 int roll_no;

 float marks;

};

int main() {

 // declare a structure variable of type "student"

 struct student s1;

 // assign values to the structure members

 strcpy(s1.name, "John");

 s1.roll_no = 1;

 s1.marks = 85.5;

 // print the structure members

 printf("Name: %s\n", s1.name);

 printf("Roll No.: %d\n", s1.roll_no);

 printf("Marks: %f\n", s1.marks);

 return 0;

}

895

In this example, a structure named "student" is defined using the struct keyword. The structure

has three members: a character array name, an integer roll_no, and a float marks. The main

function declares a structure variable s1 of type student and assigns values to its members

using the " . " operator. The printf statements then print the values of the structure members.

Another way to declare and initialize a structure variable is to use an initializer list, which allows

you to specify the values of the structure members at the time of declaration. Here is an example:

#include<stdio.h>

// define a structure named "book"

struct book {

 char title[50];

 char author[50];

 float price;

};

int main() {

 // declare and initialize a structure variable of type "book"

 struct book b1 = {"The C Programming Language", "Brian Kernighan and

Dennis Ritchie", 29.99};

 // print the structure members

 printf("Title: %s\n", b1.title);

 printf("Author: %s\n", b1.author);

 printf("Price: %f\n", b1.price);

 return 0;

}

896

In this example, a structure named "book" is defined with three members: a character array

title, a character array author, and a float price. The main function declares and initializes a

structure variable b1 of type book using an initializer list. The printf statements then print the

values of the structure members. Structures are a powerful feature of C programming language

that allows programmers to create custom data types that can be used to represent complex data

structures. They are widely used in applications such as database management, file handling, and

graphics programming, among others.

In C programming language, a pointer is a variable that stores the memory address of another

variable. Pointers allow you to manipulate data directly in memory, which can be useful for tasks

such as dynamically allocating memory or working with complex data structures. Here's an

example of how pointers work:

#include<stdio.h>

int main() {

int var = 10; /* actual variable declaration */

int *p; /* pointer variable declaration */

p = &var; /* store address of var in pointer variable */

printf("Address of var variable: %p\n", &var);

/* address stored in pointer variable */

printf("Address stored in p pointer variable: %p\n", p);

/* access the value using the pointer */

printf("Value of var: %d\n", *p);

return 0;

}

897

In this example, we declare an integer variable var and a pointer variable p. We then store the

address of var in p using the & operator. We can then access the value of var using the *

operator on the pointer variable p. When we run this program, it will output the following:

Here, the %p format specifier is used to print the memory addresses. The addresses of var and p

are the same, as expected, since p points to var. Pointer arithmetic is another important aspect of

pointers in C. You can perform arithmetic operations on pointers such as addition, subtraction,

and comparison. Here's an example:

In this example, we declare an integer array arr and a pointer variable p initialized to the first

element of the array. We then use pointer arithmetic to iterate through the array and print out the

values. When we run this program, it will output the following:

Address of var variable: 0x7ffeb2e3b9ac

Address stored in p pointer variable: 0x7ffeb2e3b9ac

Value of var: 10

#include<stdio.h>

int main() {

int arr[] = {10, 20, 30, 40, 50};

int *p = arr;

for(int i=0; i<5; i++) {

 printf("Value of arr[%d]: %d\n", i, *(p+i));

}

return 0;

}

Value of arr[0]: 10

Value of arr[1]: 20

Value of arr[2]: 30

Value of arr[3]: 40

Value of arr[4]: 50

898

Here, the *(p+i) expression is used to access the i-th element of the array through pointer

arithmetic. The *(p+i) is equivalent to p[i] and both are valid expressions to access the

elements of the array.

In C programming language, a function is a group of statements that perform a specific task.

Functions provide modularity and reusability to programs by allowing code to be organized into

independent units that can be called from other parts of the program. Here's an example of how

functions work:

#include<stdio.h>

/* function declaration */

int max(int num1, int num2);

int main() {

int a = 100;

int b = 200;

int ret;

/* calling a function to get max value */

ret = max(a, b);

printf("Max value is : %d\n", ret);

return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

int result;

if (num1 > num2) {

 result = num1;

} else {

 result = num2;

}

return result;

}

899

In this example, we declare a function named max that takes two integer arguments and returns

the maximum value. The function is declared before the main function using a function

prototype or declaration, which specifies the function's name, return type, and parameter types.

This allows the compiler to check for errors and ensure that the function is used correctly. In the

main function, we declare two integer variables a and b and assign them the values 100 and 200,

respectively. We then call the max function and pass it a and b as arguments, storing the result in

the ret variable. Finally, we print out the maximum value using printf. When we run this

program, it will output the following:

Functions can also have multiple return statements, which allows for early termination of the

function based on certain conditions. Here's an example:

Max value is : 200

#include<stdio.h>

/* function declaration */

int find_factorial(int num);

int main() {

int num, factorial;

printf("Enter a positive integer: ");

scanf("%d", &num);

factorial = find_factorial(num);

if (factorial != -1) {

 printf("Factorial of %d is %d\n", num, factorial);

900

In this example, we declare a function named find_factorial that takes a single integer

argument and returns the factorial of the number. The function checks for negative input and

returns -1 if the input is negative. Otherwise, it calculates the factorial using a for loop and

returns the result. In the main function, we prompt the user to enter a positive integer and store it

in the num variable. We then call the find_factorial function and store the result in the

factorial variable. If the result is not -1, we print out the factorial. Otherwise, we print an

error message. When we run this program, it will output the following:

} else {

 printf("Error: Factorial of negative numbers doesn't exist\n");

}

return 0;

}

/* function to calculate factorial */

int find_factorial(int num) {

int factorial = 1;

if (num < 0) {

 return -1;

 }

for (int i=1; i<=num; i++) {

 factorial *= i;

}

return factorial;

}

Enter a positive integer: 5

Factorial of 5 is 120

901

Functions can also have default arguments and variable-length arguments, but these are more

advanced features beyond the scope of this explanation.

In C programming language, an enum (short for enumeration) is a user-defined data type that

consists of a set of named integer constants. Enums provide a way to define a set of related

constants with meaningful names, which makes code more readable and easier to maintain.

Here's an example of how enums work:

#include<stdio.h>

/* define an enum for days of the week */

enum week { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

int main() {

/* declare variables of type enum week */

enum week today, tomorrow;

/* assign values to the variables */

today = Wednesday;

tomorrow = Thursday;

/* print out the values */

printf("Today is %d\n", today);

printf("Tomorrow is %d\n", tomorrow);

return 0;

}

902

In this example, we define an enum named week that consists of seven named constants

representing the days of the week. By default, the constants are assigned integer values starting

from 0 for the first constant, 1 for the second constant, and so on. We then declare two variables

of type enum week named today and tomorrow, and assign them the values Wednesday and

Thursday, respectively. Finally, we print out the values using printf. When we run this

program, it will output the following:

Enums can also have explicit values assigned to their constants, which allows for more control

over the values. Here's an example:

Today is 3

Tomorrow is 4

#include<stdio.h>

/* define an enum for colors */

enum color { Red = 1, Green = 2, Blue = 4 };

int main() {

/* declare variables of type enum color */

enum color c1, c2, c3;

/* assign values to the variables */

c1 = Red;

c2 = Green;

c3 = Blue;

/* print out the values */

printf("c1 = %d\n", c1);

903

In this example, we define an enum named color that consists of three named constants

representing colors. We assign explicit values to the constants using the assignment operator, so

that Red is assigned the value 1, Green is assigned the value 2, and Blue is assigned the value 4.

We then declare three variables of type enum color named c1, c2, and c3, and assign them the

values Red, Green, and Blue, respectively. Finally, we print out the values using printf. When

we run this program, it will output the following:

Enums can also be used as switch case statements, allowing for easy handling of related

constants. Here's an example:

printf("c2 = %d\n", c2);

printf("c3 = %d\n", c3);

return 0;

}

c1 = 1

c2 = 2

c3 = 4

#include<stdio.h>

/* define an enum for days of the week */

enum week { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

int main() {

/* declare a variable of type enum week */

enum week day;

/* get input from user */

printf("Enter a day of the week (0-6): ");

scanf("%d", &day);

904

In C programming language, a file is a collection of related data that is stored on a secondary

storage device like a hard disk or a flash drive. Files can be used to store and retrieve data in a

more permanent way than variables, which are lost when a program exits. Here's an example of

how files work in C:

/* use a switch statement to handle the input */

 switch (day) {

 case Sunday:

 printf("Sunday\n");

 break;

 case Monday:

 printf("Monday\n");

 break;

 case Tuesday:

 printf("Tuesday\n");

 break;

 case Wednesday:

 printf("Wednesday\n");

 break;

 case Thursday:

 printf("Thursday\n");

 break;

 case Friday:

 printf("Friday\n");

 break;

 case Saturday:

 printf("Saturday\n");

 break;

}

return 0;

}

905

To use files in C, you need to include the stdio.h header file. This file contains functions for

input and output, including functions for reading and writing files. Here's an example of how to

open a file for writing:

In this example, we declare a file pointer named fptr, which is a variable that holds a reference

to a file. We then open a file named example.txt for writing using the fopen function, which

takes two arguments: the name of the file, and the mode in which to open the file. In this case,

we're using the mode "w", which means "write mode". If the file doesn't exist, it will be created.

Once the file is open, we use the fprintf function to write some text to the file. This function

works like printf, but instead of printing to the console, it writes to the file. Finally, we close

the file using the fclose function. Here's an example of how to read from a file:

#include<stdio.h>

int main() {

/* declare a file pointer */

FILE *fptr;

/* open the file for writing */

fptr = fopen("example.txt", "w");

/* write some text to the file */

fprintf(fptr, "This is some example text.\n");

/* close the file */

fclose(fptr);

return 0;

}

906

In this example, we open the same file we created earlier, but this time in read mode ("r"). We

declare a character array named buffer to hold the text we read from the file. We then use the

fgets function to read up to 100 characters from the file into the buffer. Finally, we print out the

text using printf.

It's important to note that when you open a file in write mode, any existing data in the file will be

overwritten. If you want to append data to the end of the file instead, you can use the mode "a"

(append mode) instead of "w". Here's an example:

#include<stdio.h>

int main() {

/* declare a file pointer */

FILE *fptr;

/* open the file for reading */

fptr = fopen("example.txt", "r");

/* read some text from the file */

char buffer[100];

fgets(buffer, 100, fptr);

printf("The text in the file is: %s", buffer);

/* close the file */

fclose(fptr);

return 0;

}

907

In this example, we open the same file we created earlier, but this time in append mode ("a").

This means that any data we write to the file will be added to the end of the file, rather than

overwriting existing data. We use the fprintf function again to write some additional text to the

file, and then close the file using the fclose function.

#include <stdio.h>

int main() {

 /* declare a file pointer */

 FILE *fptr;

 /* open the file for appending */

 fptr = fopen("example.txt", "a");

 /* write some more text to the file */

 fprintf(fptr, "This is some additional text.\n");

 /* close the file */

 fclose(fptr);

 return 0;

}

908

C programming is a popular and widely used programming language with many advantages.

Here are some of the key advantages of C programming:

• Speed and efficiency: C is a high-performance language that is known for its speed and

efficiency. It is commonly used to develop software that requires fast execution and low-

level memory manipulation, such as operating systems, device drivers, and embedded

systems.

• Portability: C programs can be compiled and run on different platforms, including

Windows, macOS, Linux, and embedded systems, making it a portable language. This

means that code written in C can be easily transferred to other systems without significant

modifications.

• Low-level programming: C allows programmers to write code that interacts directly

with hardware and memory, making it ideal for developing system software and drivers.

• Memory management: C provides a level of control over memory management that is

not available in many other programming languages. This allows programmers to allocate

and deallocate memory manually, resulting in more efficient and optimized code.

• Extensive standard library: C comes with an extensive standard library that provides

many useful functions, such as input/output, string handling, and mathematical

operations.

• Flexibility: C is a flexible language that can be used to develop a wide range of

applications, from low-level system software to high-level applications.

• Reusability: C supports modular programming, which allows code to be divided into

smaller, more manageable functions and modules. As a result, code is easier to maintain

and more reusable.

• Widely used: C is a popular language that is widely used in industry, making it a

valuable skill for programmers to have. Many operating systems, embedded systems, and

applications are written in C.

Overall, C programming is a powerful and versatile language that is well-suited for developing

a wide range of applications. Its speed, efficiency, portability, and low-level programming

capabilities make it a popular choice for developers around the world. Using C has certain

909

drawbacks in addition to its many benefits. The following are some of the primary drawbacks of

C:

• Low-level language: C is a low-level language, which means that it requires a lot of code to

perform simple tasks. For example, in C, you need to write a lot of code to read and write files,

whereas in higher-level languages like Python, it can be done in just a few lines.

• No automatic garbage collection: C does not have automatic garbage collection, which means

that you have to manage memory allocation and deallocation yourself. This can be very tedious

and error-prone, especially when dealing with complex data structures.

• No built-in support for object-oriented programming: Unlike some other programming

languages, C does not have built-in support for object-oriented programming. This means that if

you want to use OOP concepts in your C code, you have to implement them yourself, which can

be a time-consuming process.

• Vulnerability to buffer overflow attacks: C is vulnerable to buffer overflow attacks, which

occur when a program tries to store too much data in a buffer, causing the excess data to

overwrite adjacent memory locations. This can lead to the program crashing or, in some cases,

being exploited by attackers.

• Lack of dynamic memory management: C does not have dynamic memory management built

into the language, which means that you have to manually allocate and deallocate memory. This

can lead to memory leaks if you forget to deallocate memory, which can cause your program to

consume more and more memory until it crashes.

Example:

Here's an example of a program written in C that illustrates some of these disadvantages:

#include<stdio.h>

int main() {

char buffer[100];

printf("Enter a string: ");

scanf("%s", buffer);

printf("You entered: %s\n", buffer);

return 0;

}

910

In this program, the user is prompted to enter a string, which is then stored in a buffer.

However, the program does not perform any input validation, which means that if the

user enters a string that is longer than 100 characters, it will overflow the buffer and

potentially overwrite adjacent memory locations, leading to undefined behavior or a

crash. Additionally, the program does not perform any memory management, which

means that the buffer will remain in memory even after it is no longer needed, potentially

causing a memory leak. Finally, the program does not use any object-oriented

programming concepts, making it harder to maintain and extend as it grows in

complexity.

• No built-in support for exception handling: C does not have built-in support for

exception handling, which means that error handling must be done manually using

conditional statements and error codes. This could make code more challenging to read

and maintain.

• Lack of standardization: The C language has no official standard library, which means

that different implementations of C may have different libraries and functions. This can

lead to portability issues when trying to run code on different platforms or compilers.

• Lack of type safety: C is a weakly-typed language, which means that it does not enforce

strict type checking. This can lead to errors and bugs when working with complex data

structures or when trying to perform operations on incompatible data types.

• Difficulty in debugging: Debugging C code can be difficult due to its low-level nature

and lack of built-in debugging tools. This can make it hard to find and fix bugs in

complex code.

• Potential for security vulnerabilities: Because of its low-level nature and lack of built-

in security features, C code can be vulnerable to security attacks such as buffer

overflows, which can lead to serious security issues.

Example:

Here's an example of a program written in C that illustrates some of these disadvantages:

911

In this program, the user is prompted to enter a number, which is then checked to see if

it's even or odd. However, the program does not perform any input validation, which

means that if the user enters a non-numeric value, it will cause an error. Additionally, the

program does not handle any exceptions, which means that if an error occurs, it will

simply crash. Finally, the program uses a conditional statement to check if the number is

even or odd, which can be harder to read and maintain as the code grows in complexity.

C language is a widely used programming language that has numerous practical applications.

Here are some examples of its practical applications:

• Operating Systems: C is used to write low-level system software such as operating

systems, device drivers, and firmware. Some of the well-known operating systems

written in C include UNIX, Linux, and Windows.

#include<stdio.h>

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

if (num % 2 == 0) {

printf("%d is even\n", num);

}

else {

printf("%d is odd\n", num);

}

return 0;

}

912

• Embedded Systems: C is popularly used to write code for embedded systems, such as

microcontrollers and other electronic devices, where the code must be fast, efficient, and

lightweight.

• Database Systems: C is often used in the development of database management systems

(DBMS) like MySQL and PostgreSQL, which are widely used in web and mobile

applications.

• Compilers and Interpreters: C is used to create compilers and interpreters for other

programming languages, which are essential tools for software development.

• Graphics Applications: C is often used in the development of graphics applications such

as video games, 3D modeling, and animation software.

• Web Applications: C is often used in the backend of web applications, where it's used to

handle the heavy processing of data and requests, such as parsing and manipulating XML

and JSON data.

• Scientific and Engineering Applications: C is popularly used in scientific and

engineering applications, where high-performance computing is required to handle large

amounts of data.

• Business Applications: C is also used in business applications, such as accounting

software, inventory management software, and customer relationship management

(CRM) systems.

• Artificial Intelligence and Machine Learning: C is used in the development of artificial

intelligence and machine learning algorithms, where its speed and low-level control make

it ideal for high-performance computing tasks.

Sure, here are some funny facts about C programming:

• C is often referred to as the "Dennis Ritchie Language" after its creator. In the early

days of computing, programmers had to write in machine language, which was incredibly

difficult and time-consuming. C was created to make programming easier, but ironically,

it ended up becoming one of the most complex programming languages of all time!

913

• C programming can be quite cryptic and hard to read, especially for beginners. Some

programmers have joked that C stands for "Confusing" or "Cryptic"!

• One of the most famous quotes about C programming is from Brian Kernighan, one of

the co-authors of "The C Programming Language": "Debugging is twice as hard as

writing the code in the first place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to debug it."

• C programming can be a bit of a headache because of its use of pointers. Pointers are

variables that store the memory address of another variable, and they can be quite tricky

to use correctly.

• Despite its reputation for being difficult, C programming can also be quite fun and

rewarding. There's a certain satisfaction that comes with writing code that works

perfectly and efficiently, and C programming can provide that feeling in spades.

Overall, C programming can be both frustrating and entertaining at the same time. Despite its

challenges, it remains one of the most widely used programming languages in the world, and

mastering it can be a rewarding experience for anyone who is willing to put in the time and

effort.

914

C++ − OVERVIEW

C++ is a general-purpose, high-level programming language developed by Bjarne

Stroustrup in 1985 as an extension of the C programming language. It is an object-

oriented language that supports various programming paradigms, such as procedural,

functional, and generic programming. C++ is widely used for developing applications,

system software, drivers, embedded systems, games, and other software. Here are some

key features and concepts of C++ in detail:

 Object-oriented programming: C++ is an object-oriented language, which

means it provides features like classes, objects, inheritance, and polymorphism

that allow developers to write code in an organized and modular way.

 Data types: C++ supports various data types such as integers, floating-point

numbers, characters, and Boolean values. It also provides user-defined data types

like structures, unions, and enums.

 Control structures: C++ provides control structures like if-else statements,

switch-case statements, while loops, do-while loops, and for loops to control the

flow of execution in a program.

 Functions: C++ functions are self-contained units of code that can be reused

multiple times in a program. They can be used to perform a specific task, accept

parameters, and return values.

 Pointers: C++ allows the use of pointers, which are variables that store the

memory address of another variable. They are used to manipulate memory, create

dynamic data structures, and optimize performance.

 Memory management: C++ provides memory management features like

dynamic memory allocation and deallocation using operators like new and delete.

 Exception handling: C++ supports exception handling to handle runtime errors

and ensure graceful termination of a program.

 Standard Template Library (STL): C++ provides a rich library of reusable code

called the Standard Template Library (STL). It includes containers like vectors,

lists, maps, and algorithms like sorting and searching.

915

Here's an example of a "Hello, World!" program in C++:

This program simply prints the string "Hello, World!" to the console.

Let's break down the program line by line:

 #include<iostream>: This line includes the iostream header file, which provides

input and output streams like cin and cout.

 int main() {: This line declares the main function, which is the entry point of the

program. int is the return type of the function, which indicates that it will return an

integer value. The empty parentheses indicate that the function takes no arguments.

 Templates: C++ supports templates, which allow developers to write generic

code that can work with different data types.

 Multi-paradigm support: C++ supports multiple programming paradigms,

including procedural, functional, and generic programming. This allows

developers to write code in a style that suits their needs.

 Low-level programming: C++ allows low-level programming, which means

developers can write code that interacts directly with hardware, such as device

drivers and operating systems.

Overall, C++ is a powerful and versatile language that can be used for a wide range of

programming tasks. Its flexibility, performance, and support for multiple programming

paradigms make it a popular choice for developers working on complex and demanding

projects.

#include<iostream>

int main() {

std::cout << "Hello, World!" << std::endl;

return 0;

}

916

 std::cout << "Hello, World!" << std::endl;: This line prints the string "Hello,

World!" to the console. std::cout is a standard output stream object, and the <<

operator is used to insert the string into the stream. std::endl is a special character that

adds a new line to the output.

 return 0;: This line indicates that the program has finished executing and returns the

value 0 to the operating system. A return value of 0 typically indicates success.

The std:: prefix before cout and endl is used to specify that these names are part of the std

namespace, which is the standard namespace for C++ library functions and objects. Overall, this

program demonstrates the basic syntax and structure of a C++ program. By using the iostream

library, it shows how to perform basic input or output operations, and by defining the main

function, it specifies the entry point of the program.

In C++, comments are used to add explanatory text to a program that is ignored by the compiler.

There are two types of comments in C++: single-line comments and multi-line comments.

 Single-line comments start with // and continue until the end of the line. Here's an

example:

In this example, the text after // is ignored by the compiler. Single-line comments are often used

to explain individual lines of code or to temporarily disable code during development.

 Multi-line comments start with /* and end with */. Here's an example:

// This is a single-line comment

int main() {

// This is also a single-line comment

return 0;

}

917

In this example, the text between /* and */ is ignored by the compiler. Multi-line comments are

often used to explain larger blocks of code or to temporarily disable large sections of code. It's

important to note that comments should be used sparingly and only when necessary. Overuse of

comments can make code harder to read and maintain, and can also become outdated or

misleading if the code changes. However, when used appropriately, comments can be a useful

tool for improving the clarity and understandability of a program.

Data that can be used and modified across a program is stored in variables in C++. A variable is

defined by stating its data type, name, and, if applicable, initial value. The following are some

C++ examples of variable declarations:

/*

This is a multi-line comment

that can span multiple lines

*/

int main() {

 /*

 This is also a multi-line comment

 that can span multiple lines

 */

 return 0;

}

int age = 30; // integer variable named "age" with initial value of 30

float pi = 3.14159; // floating-point variable named "pi" with initial value of 3.14159

double salary = 50000.0; // double-precision floating-point variable named "salary" with initial value of 50000.0

char grade = 'A'; // character variable named "grade" with initial value of 'A'

bool isStudent = true; // boolean variable named "isStudent" with initial value of true

918

In these examples, we declare variables with different data types including int, float, double,

char, and bool. We also assign an initial value to each variable using the assignment operator =.

Variables can be modified by assigning a new value to them, as shown in this example:

In this example, we increment the value of the count variable by 1 using the + operator and

assignment operator =. It's important to note that variables have a scope, which determines where

they can be accessed in a program. A variable declared inside a function, for example, can only

be accessed within that function. A variable declared outside of any function, on the other hand,

can be accessed throughout the entire program.

In this example, we declare a global variable named global_var outside of any function, and a

local variable named local_var inside the main function. We can access both variables within

the main function, but only the global variable can be accessed outside of the function. Overall,

int count = 0; // declare an integer variable named "count" with initial value of 0

count = count + 1; // increment the value of "count" by 1

#include<iostream>

int global_var = 10; // Global variable

int main() {

int local_var = 20; // Local variable

std::cout << "Global variable value: " << global_var << std::endl;

std::cout << "Local variable value: " << local_var << std::endl;

return 0;

}

919

variables are an essential part of C++ programming and are used to store and manipulate data

throughout a program.

In C++, data types specify the type of data that can be stored in a variable. C++ supports a wide

range of data types, including:

1. Integers: used to store whole numbers. There are several integer data types in C++,

including int, short, long, and long long. Example:

2. Floating-point numbers: used to store numbers with decimal points. There are two

floating-point data types in C++, float and double. Example:

3. Characters: used to store single characters. Character data types are denoted by the char

keyword. Example:

4. Boolean: used to store true or false values. Boolean data types are denoted by the

bool keyword. Example:

int age = 30;

short weight = 150;

long distance = 1000000;

long long total = 9000000000;

float pi = 3.14159;

double salary = 50000.0;

char grade = 'A';

bool isStudent = true;

920

5. Arrays: used to store a collection of data of the same data type. Example:

6. Pointers: used to store the memory address of another variable. Example:

It's important to note that data types have different ranges and precision, and choosing the

appropriate data type for a variable is important for performance and accuracy. For example,

using a short data type instead of an int data type for large numbers can cause overflow or

truncation of the value. C++ also provides type modifiers, such as signed and unsigned, to

further specify the range of a data type. For example, unsigned int can only store non-negative

integers. Overall, understanding data types in C++ is important for writing efficient and accurate

code.

C++ operators are special symbols and keywords used to perform various operations on

variables and values. Here are some common C++ operators with examples:

1. Arithmetic Operators:

 Addition (+): int sum = 5 + 3; (sum equals 8)

 Subtraction (-): int difference = 5 - 3; (difference equals 2)

 Multiplication (*): int product = 5 * 3; (product equals 15)

 Division (/): float quotient = 5.0 / 3.0; (quotient equals 1.66667)

 Modulo (%): int remainder = 5 % 3; (remainder equals 2)

2. Assignment Operators:

 Simple Assignment (=): int a = 5; (a equals 5)

 Compound Assignment (+=, -=, *=, /=, %=): a += 3; (a equals 8)

3. Comparison Operators:

 Equal to (==): bool isEqual = 5 == 3; (isEqual equals false)

int numbers[5] = {1, 2, 3, 4, 5};

int age = 30;

int* agePtr = &age; // agePtr stores the memory address of age

921

 Not equal to (!=): bool isNotEqual = 5 != 3; (isNotEqual equals true)

 Greater than (>): bool isGreater = 5 > 3; (isGreater equals true)

 Less than (<): bool isLess = 5 < 3; (isLess equals false)

 Greater than or equal to (>=): bool isGreaterOrEqual = 5 >= 3;

(isGreaterOrEqual equals true)

 Less than or equal to (<=): bool isLessOrEqual = 5 <= 3; (isLessOrEqual

equals false)

4. Logical Operators:

 Logical AND (&&): bool isTrue = (5 > 3) && (4 < 6); (isTrue equals true)

 Logical OR (||): bool isFalse = (5 < 3) || (4 > 6); (isFalse equals

false)

 Logical NOT (!): bool isNotTrue = !(5 > 3); (isNotTrue equals false)

5. Bitwise Operators:

 Bitwise AND (&): int result = 5 & 3; (result equals 1)

 Bitwise OR (|): int result = 5 | 3; (result equals 7)

 Bitwise XOR (^): int result = 5 ^ 3; (result equals 6)

 Bitwise NOT (~): int result = ~5; (result equals -6)

 Left shift (<<): int result = 5 << 1; (result equals 10)

 Right shift (>>): int result = 5 >> 1; (result equals 2)

These are just some of the many operators available in C++.

In C++, a string is a sequence of characters stored in a contiguous block of memory. The string

data type is defined in the <string> header file. Here are some examples of working with C++

strings:

1. Creating a string:

#include<string>

using namespace std;

string str1 = "Hello, world!"; // initializing string with a literal

string str2("I am a string."); // initializing string with constructor

string str3; // declaring an empty string

922

2. Accessing and modifying characters in a string:

3. Concatenating strings:

4. Finding substrings:

5. Converting strings to numeric values:

6. Getting the length of a string:

7. Comparing strings:

char first_char = str1[0]; // accessing the first character of the string

str1[7] = 'W'; // changing the 8th character to 'W'

str1.at(4) = 'o'; // changing the 5th character to 'o' using the at() method

string greeting = "Hello";

string name = "Alice";

string message = greeting + ", " + name + "!"; // concatenating strings with the + operator

string sentence = "The quick brown fox jumps over the lazy dog.";

int position = sentence.find("fox"); // finding the first occurrence of "fox"

string word = sentence.substr(16, 5); // extracting the word "brown" starting from position 16

string num_string = "12345";

int num_int = stoi(num_string); // converting string to integer

double num_double = stod("3.14"); // converting string to double

int length = str1.length(); // getting the length of the string

923

In C++, the math library provides a set of functions for performing mathematical operations.

Here are some examples of working with C++ math functions:

1. Absolute value:

2. Square root:

3. Trigonometric functions:

string s1 = "hello";

string s2 = "world";

if (s1 == s2) {

 // strings are equal

} else {

 // strings are not equal

}

#include<cmath>

using namespace std;

double num = -3.14;

double abs_num = abs(num); // taking the absolute value of a number

double x = 16.0;

double sqrt_x = sqrt(x); // taking the square root of a number

double angle = 45.0;

double radians = angle * M_PI / 180.0; // converting angle to radians

double sin_val = sin(radians); // taking the sine of an angle in radians

double cos_val = cos(radians); // taking the cosine of an angle in radians

double tan_val = tan(radians); // taking the tangent of an angle in radians

924

4. Exponential function:

5. Logarithmic functions:

6. Power function:

7. Rounding functions:

Note that the math library also provides many more functions than what is covered here, such

as hyperbolic functions, inverse trigonometric functions, and more. You can include the <cmath>

header file to use these functions in your C++ programs.

double x = 2.0;

double exp_x = exp(x); // taking the exponential function of a number

double x = 10.0;

double log_x = log(x); // taking the natural logarithm of a number

double log10_x = log10(x); // taking the base 10 logarithm of a number

double base = 2.0;

double exponent = 3.0;

double result = pow(base, exponent); // taking the power of a base to an exponent

double x = 3.7;

double rounded_down = floor(x); // rounding down to the nearest integer

double rounded_up = ceil(x); // rounding up to the nearest integer

double rounded_nearest = round(x); // rounding to the nearest integer

925

In C++, a boolean is a data type that represents either true or false. Here are some examples of

working with C++ booleans:

1. Creating a boolean:

2. Comparing values:

3. Logical operators:

4. Conditional statements:

#include<iostream>

using namespace std;

bool is_sunny = true; // initializing a boolean with a literal

bool is_raining(false); // initializing a boolean with a constructor

bool is_cloudy; // declaring an uninitialized boolean

bool result = (3 == 3); // comparing two values for equality

bool is_greater = (5 > 3); // comparing two values for greater than

bool is_less_equal = (10 <= 15); // comparing two values for less than or equal to

bool a = true;

bool b = false;

bool and_result = a && b; // logical AND

bool or_result = a || b; // logical OR

bool not_result = !a; // logical NOT

bool is_sunny = true;

if (is_sunny) {

 cout << "It's a sunny day!" << endl;

} else {

 cout << "It's not a sunny day." << endl;

}

926

5. Boolean expressions in loops:

Note that boolean values are commonly used in conditional statements, loops, and other control

structures in C++. In addition, C++ provides the keywords true and false to represent boolean

values, and the <stdbool.h> header file can be included for compatibility with C.

In C++, the if...else statement allows you to execute different code based on whether a

condition is true or false. Here are some examples of working with if...else statements in

C++:

1. Basic if statement:

2. if...else statement:

bool is_running = true;

int count = 0;

while (is_running) {

 count++;

 if (count == 10) {

 is_running = false;

 }

}

int x = 10;

if (x > 5) {

 cout << "x is greater than 5" << endl;

}

int x = 10;

if (x > 5) {

 cout << "x is greater than 5" << endl;

} else {

 cout << "x is less than or equal to 5" << endl;

}

927

3. Nested if...else statements:

4. if...else if...else statement:

5. Ternary operator:

Note that the if...else statement is a fundamental control structure in C++, and can be used to

control the flow of your program based on specific conditions. By combining if...else

int x = 10;

if (x > 5) {

 if (x < 15) {

 cout << "x is between 5 and 15" << endl;

 } else {

 cout << "x is greater than or equal to 15" << endl;

 }

} else {

 cout << "x is less than or equal to 5" << endl;

}

int x = 10;

if (x < 5) {

 cout << "x is less than 5" << endl;

} else if (x < 10) {

 cout << "x is between 5 and 10" << endl;

} else {

 cout << "x is greater than or equal to 10" << endl;

}

int x = 10;

int result = (x > 5) ? 1 : 0; // if x > 5, set result to 1, otherwise set it to 0

928

statements with logical operators and comparison operators, you can create complex control

structures that can handle a wide variety of conditions.

In C++, the switch statement allows you to execute different code based on the value of a

variable. Here is the basic syntax of a switch statement:

Here are some examples of using the switch statement in C++:

Example 1: Printing the name of a day based on its number

switch(variable){

 case value1:

 // code to execute when variable == value1

 break;

 case value2:

 // code to execute when variable == value2

 break;

 // additional cases can be added

 default:

 // code to execute when variable does not match any of the cases

 break;

}

#include<iostream>

using namespace std;

int main() {

 int day = 3;

 switch(day) {

 case 1:

 cout << "Monday";

 break;

929

Output:

Example 2: Calculating the result of an arithmetic operation

 case 2:

 cout << "Tuesday";

 break;

 case 3:

 cout << "Wednesday";

 break;

 case 4:

 cout << "Thursday";

 break;

 case 5:

 cout << "Friday";

 break;

 case 6:

 cout << "Saturday";

 break;

 case 7:

 cout << "Sunday";

 break;

 default:

 cout << "Invalid day";

 break;

 }

 return 0;

}

Wednesday

930

#include<iostream>

using namespace std;

int main() {

 int a = 10, b = 5;

 char op = '-';

 int result;

 switch(op) {

 case '+':

 result = a + b;

 break;

 case '-':

 result = a - b;

 break;

 case '*':

 result = a * b;

 break;

 case '/':

 result = a / b;

 break;

 default:

 cout << "Invalid operator";

 return 1;

 }

 cout << "Result: " << result;

 return 0;

}

Output:

Result: 5

931

Example 3: Checking the type of a variable

Output:

#include<iostream>

#include<typeinfo>

using namespace std;

int main() {

 auto x = 1.5;

 switch(typeid(x).hash_code()) {

 case typeid(int).hash_code():

 cout << "x is an integer";

 break;

 case typeid(float).hash_code():

 cout << "x is a float";

 break;

 case typeid(double).hash_code():

 cout << "x is a double";

 break;

 default:

 cout << "x has an unknown type";

 break;

 }

 return 0;

}

x is a double

932

Loops in C++ allow you to execute a block of code repeatedly based on a certain condition.

There are three types of loops in C++:

1. The for loop

2. The while loop

3. The do-while loop

Here is an example and explanation of each loop:

1. The for loop:

The for loop is used when you know exactly how many times you want to execute the

loop. It has three parts: initialization, condition, and increment or decrement.

Syntax:

Example:

Output:

for (initialization; condition; increment/decrement) {

 // code to be executed repeatedly

}

#include<iostream>

using namespace std;

int main() {

 for (int i = 0; i < 5; i++) {

 cout << i << endl;

 }

 return 0;

}

933

Explanation:

In this example, the loop will execute five times because the condition is set to run while i is less

than 5. The i variable is initialized to 0 and incremented by 1 at the end of each loop iteration.

2. The while loop:

The while loop is used when you don't know exactly how many times you want to

execute the loop. It will continue to run until the condition becomes false.

Syntax:

Example:

0

1

2

3

4

while (condition) {

 // code to be executed repeatedly

}

#include<iostream>

using namespace std;

int main() {

 int i = 0;

 while (i < 5) {

 cout << i << endl;

 i++;

 }

 return 0;

}

934

Output:

Explanation:

This example achieves the same result as the for loop example above. The loop will continue to

execute as long as the i variable is less than 5.

3. The do-while loop:

The do-while loop is similar to the while loop, but the condition is checked at the end of

the loop iteration instead of the beginning. This means that the loop will always execute

at least once.

Syntax:

Example:

0

1

2

3

4

do {

 // code to be executed repeatedly

} while (condition);

#include<iostream>

using namespace std;

int main() {

 int i = 0;

 do {

 cout << i << endl;

 i++;

 } while (i < 5);

 return 0;

}

935

Output:

Explanation:

This example also achieves the same result as the previous two examples. The loop will execute

at least once because the condition is checked at the end of the first iteration.

In C++, an array is a collection of elements of the same data type that are stored in contiguous

memory locations. Each element in the array is accessed using an index, which represents the

position of the element in the array. Arrays can be useful for storing and manipulating large

amounts of data.

Syntax to declare an array:

Here, dataType is the data type of the elements you want to store, arrayName is the name of the

array, and arraySize is the number of elements in the array.

Example:

This creates an array of integers with 5 elements.

0

1

2

3

4

dataType arrayName[arraySize];

int arr[5];

936

Initialization of an array can be done using braces {}. The values are separated by commas and

the number of values must match the number of elements in the array.

Example:

This initializes an array of integers with 5 elements, where the first element is 1, the second

element is 2, and so on.

Accessing elements of an array can be done using indices, starting from 0 for the first element.

Example:

In C++, arrays are fixed in size, which means that the number of elements in the array cannot be

changed after the array is declared. To change the value of an element in the array, simply assign

a new value to the element using the index.

Example:

In addition to one-dimensional arrays, C++ also supports multidimensional arrays, such as two-

dimensional arrays, three-dimensional arrays, and so on. A two-dimensional array can be thought

of as a table, with rows and columns of elements.

int arr[5] = {1, 2, 3, 4, 5};

cout << arr[0]; // Accesses the first element of the array

cout << arr[3]; // Accesses the fourth element of the array

arr[2] = 10; // Changes the third element of the array to 10

937

Example of a two-dimensional array:

This initializes a two-dimensional array with 3 rows and 4 columns.

To sum up, arrays are a fundamental data structure in C++, and can be useful for storing and

manipulating large amounts of data in a structured manner.

In C++, a reference is an alias for a variable, which allows you to refer to the original variable

using a different name. References can be useful for passing arguments to functions, as they

avoid the overhead of making a copy of the argument.

Syntax to declare a reference:

Here, dataType is the data type of the variable being referred to, refName is the name of the

reference, and variableName is the name of the variable being referred to.

Example:

This creates a reference to the integer variable num, named numRef.

Assigning a value to a reference changes the value of the original variable being referred to.

Example:

int arr[3][4] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};

dataType& refName = variableName;

int num = 10;

int& numRef = num;

938

This assigns the value 20 to the reference numRef, which changes the value of the original

variable num to 20.

References can be useful for passing arguments to functions by reference, which allows the

function to modify the original value of the argument.

Example:

This declares a function named doubleValue, which takes an integer reference as an argument

and doubles the value of the argument. The function is then called in the main function with the

integer variable num as the argument.

Overall, references in C++ are aliases for variables, which can be useful for passing

arguments to functions and modifying the original value of the argument.

numRef = 20;

cout << num; // Outputs 20

void doubleValue(int& num) {

 num *= 2;

}

int main() {

 int num = 10;

 doubleValue(num);

 cout << num; // Outputs 20

 return 0;

}

939

In C++, a pointer is a variable that stores the memory address of another variable. Pointers

can be useful for manipulating memory directly and for implementing complex data structures.

Syntax to declare a pointer:

Here, dataType is the data type of the variable being pointed to, and pointerName is the name

of the pointer.

Example:

This declares a pointer to an integer variable.

To assign a value to a pointer, you must use the address-of operator & to obtain the memory

address of the variable being pointed to.

Example:

This assigns the memory address of the integer variable num to the pointer numPtr.

To access the value of the variable being pointed to, you must use the dereference operator *.

Example:

dataType* pointerName;

int* numPtr;

int num = 10;

int* numPtr = #

cout << *numPtr;

940

This outputs the value of the integer variable being pointed to by numPtr.

Pointers can be useful for passing arguments to functions, as they allow the function to access

and modify the original value of the argument.

Example:

This declares a function named doubleValue, which takes a pointer to an integer variable as an

argument and doubles the value of the variable using the dereference operator. The function is

then called in the main function with the pointer to the integer variable num as the argument.

In addition to pointers to variables, C++ also supports pointers to arrays and pointers to

functions.

Example of a pointer to an array:

void doubleValue(int* numPtr) {

 *numPtr *= 2;

}

int main() {

 int num = 10;

 int* numPtr = #

 doubleValue(numPtr);

 cout << num; // Outputs 20

 return 0;

}

int arr[5] = {1, 2, 3, 4, 5};

int* arrPtr = arr;

941

This declares an array of integers with 5 elements and a pointer to the first element of the array.

Example of a pointer to a function:

This declares a function named add, which takes two integer arguments and returns their sum,

and a pointer to the add function.

Overall, pointers in C++ are variables that store the memory address of another variable,

which can be useful for manipulating memory directly and for implementing complex data

structures.

In C++, files are used for input and output operations. Input operations involve reading data

from a file into a program, while output operations involve writing data from a program to a file.

C++ provides several file stream classes for handling file input and output operations: ifstream

for input from a file, ofstream for output to a file, and fstream for both input and output.

Syntax to open a file:

Here, filename is the name of the file to be opened, and mode is the mode in which to open the

file, which can be either ios::in for input, ios::out for output, or ios::in | ios::out for

both input and output.

int add(int x, int y) {

 return x + y;

}

int (*addPtr)(int, int) = add;

fstream fileStream;

fileStream.open("filename", mode);

942

Example of opening a file for output:

This opens a file named output.txt in output mode.

To write data to a file, you can use the insertion operator <<.

Example of writing data to a file:

This writes the string "Hello, world!" to the file output.txt.

To read data from a file, you can use the extraction operator >>.

Example of reading data from a file:

This opens a file named input.txt in input mode and reads a string of data from the file into the

variable data.

After finishing file operations, it is important to close the file using the close function.

ofstream outputFile;

outputFile.open("output.txt", ios::out);

outputFile << "Hello, world!";

ifstream inputFile;

inputFile.open("input.txt", ios::in);

string data;

inputFile >> data;

943

Example of closing a file:

This closes the output file output.txt.

In addition to the basic file operations, C++ also provides functions for checking the status of a

file, moving the file pointer, and working with binary files. Overall, files in C++ are used for

input and output operations, and C++ provides several file stream classes for handling file input

and output. To perform file operations, a file must be opened, data must be read from or written

to the file, and the file must be closed after finishing the operations.

In C++, functions are blocks of code that perform specific tasks. They are used to break down

a program into smaller, more manageable pieces of code, and to avoid writing the same code

repeatedly. Here are some examples of C++ functions:

1. Function with no parameters and no return value

outputFile.close();

#include<iostream>

void printHello() {

 std::cout << "Hello, world!" << std::endl;

}

int main() {

 printHello(); // prints "Hello, world!"

 return 0;

}

944

This function printHello takes no parameters and returns no value. It simply prints

"Hello, world!" to the console.

2. Function with parameters and no return value

This function printName takes a std::string parameter name and returns no value. It prints

"Hello, " followed by the value of name and an exclamation mark.

3. Function with parameters and return value

#include <iostream>

void printName(std::string name) {

 std::cout << "Hello, " << name << "!" << std::endl;

}

int main() {

 printName("Alice"); // prints "Hello, Alice!"

 printName("Bob"); // prints "Hello, Bob!"

 return 0;

}

#include<iostream>

int square(int num) {

 return num * num;

}

int main() {

 std::cout << square(5) << std::endl; // prints 25

 std::cout << square(-3) << std::endl; // prints 9

 return 0;

}

945

This function square takes an int parameter num and returns the square of num. It is used in

main to print the square of 5 and -3.

4. Recursive function

This function factorial is a recursive function that calculates the factorial of a number n. It

uses the formula n! = n * (n-1)!. The base case is when n is 0, in which case the function

returns 1.

5. Function with default arguments

#include<iostream>

int factorial(int n) {

 if (n == 0) {

 return 1;

 } else {

 return n * factorial(n - 1);

 }

}

int main() {

 std::cout << factorial(5) << std::endl; // prints 120

 std::cout << factorial(0) << std::endl; // prints 1

 return 0;

}

#include<iostream>

void printAge(std::string name, int age = 18) {

 std::cout << name << " is " << age << " years old." << std::endl;

}

946

This function printAge takes a std::string parameter name and an optional int parameter

age with a default value of 18. It prints name and age to the console.

6. Function overloading

Function overloading in C++ allows multiple functions to have the same name but different

parameter lists. This makes it possible to use the same function name for operations that are

conceptually similar but differ in the types or number of arguments used. Here's an example of

function overloading:

int main() {

 printAge("Alice"); // prints "Alice is 18 years old."

 printAge("Bob", 25); // prints "Bob is 25 years old."

 return 0;

}

#include<iostream>

int add(int a, int b) {

 std::cout << "Calling integer version of add()" << std::endl;

 return a + b;

}

double add(double a, double b) {

 std::cout << "Calling double version of add()" << std::endl;

 return a + b;

}

int main() {

 std::cout << add(1, 2) << std::endl; // calls integer version of add()

 std::cout << add(3.14, 2.71) << std::endl; // calls double version of add()

 return 0;

}

947

In this example, we have two functions with the same name add, but one takes two int

parameters and the other takes two double parameters. When the function is called with int

arguments, the integer version of the function is called, and when the function is called with

double arguments, the double version of the function is called. This is possible because the

function signature (name and parameter list) determines which function is called. Function

overloading can be useful in many situations, such as when you need to perform a similar

operation on different types of data, or when you want to provide multiple ways to call a function

with different numbers or types of arguments. However, care should be taken to ensure that the

overloaded functions have different parameter lists to avoid ambiguity.

7. Lambda function

This is an example of a lambda function. It is an anonymous function that can be assigned to a

variable, like sum. In this example, it takes two int parameters and returns their sum. The ->

int syntax is used to specify the return type. Lambda functions can be useful for writing

concise, functional-style code that is easy to read and understand. They are commonly used in

C++ for algorithms such as std::sort, std::transform, and std::for_each, as well as

in asynchronous programming with std::async and std::future.

#include<iostream>

int main() {

 int x = 5;

 int y = 7;

 auto sum = [](int a, int b) -> int {

 return a + b;

 };

 std::cout << sum(x, y) << std::endl; // prints 12

 return 0;

}

948

In C++, a class is a user-defined data type that encapsulates data and functions into a single

entity. It provides a way to organize and structure code, and to create objects that can be used to

represent real-world entities or concepts. In this section, we'll look at how to define and use a

class in C++. Here's an example of a simple class:

In this example, we define a class Rectangle that has two data members width and height,

and two member functions area() and print(). The area() function calculates the area of

#include<iostream>

class Rectangle {

public:

 int width, height;

 int area() {

 return width * height;

 }

 void print() {

 std::cout << "Width: " << width << ", Height: " << height << std::endl;

 }

};

int main() {

 Rectangle r;

 r.width = 10;

 r.height = 20;

 std::cout << "Area: " << r.area() << std::endl;

 r.print();

 return 0;

}

949

the rectangle by multiplying the width and height, and the print() function prints the width

and height to the console. In the main() function, we create an object r of the Rectangle

class and set its width and height to 10 and 20, respectively. We then call the area() function to

calculate the area of the rectangle and print it to the console, followed by a call to the print()

function to print the width and height of the rectangle.

Classes can also have constructors and destructors, which are special member functions that are

called when an object is created and destroyed, respectively. Here's an example that shows how

to define a constructor and destructor for the Rectangle class:

#include<iostream>

class Rectangle {

public:

 int width, height;

 Rectangle() {

 width = 0;

 height = 0;

 std::cout << "Rectangle constructor called" << std::endl;

 }

 Rectangle(int w, int h) {

 width = w;

 height = h;

 std::cout << "Rectangle constructor called" << std::endl;

 }

 ~Rectangle() {

 std::cout << "Rectangle destructor called" << std::endl;

 }

950

In this example, we define two constructors for the Rectangle class: a default constructor that

sets the width and height to 0, and a parameterized constructor that takes two integer arguments

and initializes the width and height with those values. We also define a destructor that prints a

message to the console when the object is destroyed. In the main() function, we create two

objects of the Rectangle class: r1 using the default constructor, and r2 using the

parameterized constructor with arguments 10 and 20. We then call the print() function on

both objects to print their width and height to the console. Classes can be used to encapsulate

data and behavior, and to create objects that represent real-world entities or concepts. They can

also be used to define more complex data structures and algorithms, such as linked lists, trees,

and graphs. Understanding how to define and use classes is an important part of C++

programming.

int area() {

 return width * height;

 }

 void print() {

 std::cout << "Width: " << width << ", Height: " << height << std::endl;

 }

};

int main() {

 Rectangle r1;

 r1.print();

 Rectangle r2(10, 20);

 r2.print();

 return 0;

}

951

In C++, an object is an instance of a class. It is a concrete representation of the data and behavior

defined by the class, and can be used to perform operations and interact with other objects and

the environment. When you create an object of a class, you are essentially creating a new

variable of that type. The object has its own set of data members, which are initialized according

to the constructor of the class, and its own set of member functions, which can be used to

manipulate the data members and perform operations. Here's an example that demonstrates

how to create and use objects in C++:

#include<iostream>

class Rectangle {

public:

 int width, height;

 Rectangle(int w, int h) {

 width = w;

 height = h;

 }

 int area() {

 return width * height;

 }

 void print() {

 std::cout << "Width: " << width << ", Height: " << height << std::endl;

 }

};

int main() {

 Rectangle r1(10, 20);

 r1.print();

 std::cout << "Area: " << r1.area() << std::endl;

 Rectangle r2(5, 15);

 r2.print();

 std::cout << "Area: " << r2.area() << std::endl;

 return 0;

}

952

In this example, we define a class Rectangle that has two data members width and height, a

constructor that initializes the data members with the provided values, and two member functions

area() and print() that calculate the area of the rectangle and print its dimensions to the

console, respectively. In the main() function, we create two objects of the Rectangle class,

r1 and r2, with different values for the width and height data members. We then call the

print() function and the area() function on both objects to print their dimensions and

calculate their areas. Objects in C++ are an important tool for representing real-world entities

and for creating data structures and algorithms. They provide a way to encapsulate data and

behavior into a single entity, and to create multiple instances of that entity with different data

values. Understanding how to create and use objects is an essential part of C++ programming.

C++ exceptions are a way to handle runtime errors in a program. Exceptions allow the program

to detect and handle errors gracefully, rather than crashing or producing undefined behavior.

When an error occurs, an exception object is created and thrown to the nearest enclosing try-

catch block that can handle it. If no such block is found, the program terminates. Here's an

example that demonstrates how to use exceptions in C++:

#include<iostream>

int main() {

 int x, y;

 std::cout << "Enter two integers: ";

 std::cin >> x >> y;

 try {

 if (y == 0) {

 throw std::runtime_error("Division by zero");

 }

 std::cout << "Result: " << x / y << std::endl;

 }

953

In this example, we ask the user to enter two integers x and y, and then attempt to divide x by y.

If y is zero, we throw an exception with a message "Division by zero". We catch the exception

with a try-catch block that handles std::exception objects. If an exception is thrown, we

print an error message to the console. Here's another example that demonstrates how to define

and use custom exception classes:

 catch (std::exception& e) {

 std::cout << "Error: " << e.what() << std::endl;

 }

 return 0;

}

#include<iostream>

#include<string>

class MyException : public std::exception {

private:

 std::string message;

public:

 MyException(std::string msg) {

 message = msg;

 }

 virtual const char* what() const throw() {

 return message.c_str();

 }

};

int main() {

 try {

954

In this example, we define a custom exception class MyException that inherits from

std::exception. The MyException class has a constructor that takes a message string as

input, and a what() function that returns the message string when called. In the main()

function, we throw a MyException object with the message "Custom exception", and catch it

with a try-catch block that handles std::exception objects. Exceptions are a powerful

tool for handling errors and preventing crashes in C++ programs. By throwing and catching

exceptions, you can detect and recover from errors gracefully, and provide useful error messages

to the user. When designing C++ programs, it's important to consider the potential errors that can

occur and to use exceptions to handle them appropriately.

Encapsulation is the concept of hiding the implementation details of a class from the outside

world and providing a public interface to access its functionality. In C++, encapsulation is

achieved through the use of access modifiers like public, private, and protected in the class

definition.

Here is an example of encapsulation in C++:

 throw MyException("Custom exception");

 }

 catch (std::exception& e) {

 std::cout << "Error: " << e.what() << std::endl;

 }

 return 0;

}

955

#include<iostream>

class BankAccount {

private:

 std::string accountNumber;

 double balance;

public:

 BankAccount(std::string num, double bal) {

 accountNumber = num;

 balance = bal;

 }

 void deposit(double amount) {

 balance += amount;

 }

 void withdraw(double amount) {

 if (amount <= balance) {

 balance -= amount;

 }

 else {

 std::cout << "Insufficient balance" << std::endl;

 }

 }

 double getBalance() {

 return balance;

 }

};

int main() {

 BankAccount acc("12345", 1000.0);

 acc.deposit(500.0);

 std::cout << "Balance after deposit: " << acc.getBalance() << std::endl;

 acc.withdraw(2000.0);

 std::cout << "Balance after withdrawal: " << acc.getBalance() << std::endl;

 return 0;

}

956

In this example, we define a class BankAccount that has two private data members,

accountNumber and balance, and three public member functions, deposit(),

withdraw(), and getBalance(). The deposit() and withdraw() functions modify the

balance data member, while the getBalance() function returns the balance to the calling

code. The private data members accountNumber and balance are not directly accessible

from the outside world. The calling code can only interact with the public member functions,

which provide a safe and controlled way of accessing and modifying the object's data. This way

of encapsulating the data members of a class ensures that they cannot be accidentally modified

from outside the class, which makes the code more robust and maintainable.

Inheritance is a key concept in object-oriented programming that allows a new class to be based

on an existing class, inheriting its attributes and behavior. In C++, inheritance is implemented

using the class keyword, followed by the name of the new class, a colon, and the name of the

base class. Here is an example of inheritance in C++:

#include<iostream>

class Shape {

protected:

 int width;

 int height;

public:

 Shape(int w, int h) {

 width = w;

 height = h;

 }

 virtual int area() {

 std::cout << "Parent class area:" << std::endl;

 return 0;

 }

957

};

class Rectangle : public Shape {

public:

 Rectangle(int w, int h) : Shape(w, h) {}

 int area() override {

 std::cout << "Rectangle class area:" << std::endl;

 return (width * height);

 }

};

class Triangle : public Shape {

public:

 Triangle(int w, int h) : Shape(w, h) {}

 int area() override {

 std::cout << "Triangle class area:" << std::endl;

 return (width * height / 2);

 }

};

int main() {

 Shape* shape;

 Rectangle rect(10, 5);

 Triangle tri(10, 5);

 shape = ▭

 std::cout << "Rectangle area: " << shape->area() << std::endl;

 shape = &tri;

 std::cout << "Triangle area: " << shape->area() << std::endl;

 return 0;

}

958

In this example, we define a base class Shape that has two protected data members width and

height, and a public member function area(). We also define two derived classes

Rectangle and Triangle that inherit from Shape. The derived classes Rectangle and

Triangle add their own implementation of the area() function, which overrides the

implementation in the base class. This is achieved by using the override keyword, which tells

the compiler to check that the function is actually overriding a base class function. In the

main() function, we create objects of type Rectangle and Triangle, and use a pointer of

type Shape* to point to them. We then call the area() function on these objects through the

Shape* pointer, which invokes the overridden functions in the derived classes. This way of

using inheritance allows us to reuse code from the base class and add new functionality in the

derived classes, while still maintaining a common interface through the public member functions

of the base class.

Polymorphism is a feature of object-oriented programming that allows objects to take on

multiple forms or behaviors depending on the context in which they are used. In C++,

polymorphism is achieved through the use of virtual functions, which are functions that can be

overridden by derived classes. Polymorphism can be categorized into two types:

 Compile-time polymorphism (also known as static polymorphism): This type of

polymorphism is achieved through function overloading and operator overloading.

 Run-time polymorphism (also known as dynamic polymorphism): This type of

polymorphism is achieved through inheritance and virtual functions.

Run-time polymorphism is the most commonly used type of polymorphism in C++. It allows

you to write code that works with objects of different types, as long as they all implement the

same interface (i.e. have the same set of virtual functions). When you call a virtual function on a

base class pointer or reference, the actual function that gets called depends on the type of the

object that the pointer or reference points to. This allows you to write code that works with

objects of different types, but still calls the correct function for each type. For example, consider

a base class Animal and two derived classes Dog and Cat. The Animal class has a virtual

959

function makeSound() that is overridden in the Dog and Cat classes. We can create a pointer

of type Animal* that can point to objects of type Dog and Cat. When we call the

makeSound() function on the Animal* pointer, the actual function that gets called depends on

the type of the object that the pointer points to. This allows us to write code that works with both

Dog and Cat objects, but still calls the correct makeSound() function for each type.

#include<iostream>

class Animal {
public:
 virtual void makeSound() {
 std::cout << "Animal sound" << std::endl;
 }
};

class Dog : public Animal {
public:
 void makeSound() override {
 std::cout << "Woof!" << std::endl;
 }
};

class Cat : public Animal {
public:
 void makeSound() override {
 std::cout << "Meow!" << std::endl;
 }
};

int main() {
 Animal* animal;
 Dog dog;
 Cat cat;

 animal = &dog;
 animal->makeSound(); // Output: Woof!

 animal = &cat;
 animal->makeSound(); // Output: Meow!

 return 0;
}

960

In this example, we use the Animal* pointer to point to objects of type Dog and Cat. When we

call the makeSound() function on the Animal* pointer, the actual function that gets called

depends on the type of the object that the pointer points to. This allows us to write code that

works with both Dog and Cat objects, but still calls the correct makeSound() function for each

type.

In C++, a constructor is a special member function of a class that is called when an object of

that class is created. The purpose of the constructor is to initialize the data members of the object

to some initial values. The syntax for a constructor is as follows:

The constructor has the same name as the class and does not have a return type. It can have

parameters, just like a regular function. There are two types of constructors in C++: default

constructor and parameterized constructor. The default constructor is a constructor that

takes no parameters, and its purpose is to initialize the data members of the object to some

default values. If a class does not have any constructors defined, the compiler automatically

generates a default constructor for the class. For example:

class ClassName {

public:

 ClassName(); // Constructor declaration

};

#include<iostream>

class Point {

public:

 int x, y;

 Point() {

 x = 0;

 y = 0;

961

In this example, we have defined a class Point that represents a point in 2D space. We have

defined a default constructor that initializes the x and y data members to 0. When we create an

object of the Point class using the default constructor, the x and y data members are

initialized to 0. A parameterized constructor is a constructor that takes one or more

parameters, and its purpose is to initialize the data members of the object to some specific values

based on the arguments passed to the constructor. For example:

}

};

int main() {

 Point p;

 std::cout << p.x << ", " << p.y << std::endl; // Output: 0, 0

 return 0;

}

#include <iostream>

class Point {

public:

 int x, y;

 Point(int x, int y) {

 this->x = x;

 this->y = y;

 }

};

int main() {

 Point p(1, 2);

 std::cout << p.x << ", " << p.y << std::endl; // Output: 1, 2

 return 0;

}

962

In this example, we have defined a parameterized constructor that takes two integers x and y

as arguments. The constructor initializes the x and y data members of the object to the values

passed as arguments. When we create an object of the Point class using the parameterized

constructor with arguments 1 and 2, the x and y data members are initialized to 1 and 2,

respectively.

There are several advantages of using C++, some of which are:

 High performance: C++ is a compiled language, which means that code written in C++

is compiled into machine code that can be executed directly by the computer's processor.

This makes C++ programs very fast and efficient.

 Object-oriented programming: C++ supports object-oriented programming (OOP),

which allows developers to write code that is organized around objects and classes. OOP

makes it easier to write and maintain large, complex programs.

 Portability: C++ code can be compiled and run on a wide variety of platforms, including

Windows, macOS, Linux, and many others.

 Standard libraries: C++ comes with a large number of standard libraries that provide a

wide range of functionality, including input/output, strings, math functions, and more.

These libraries can save developers a lot of time and effort by providing pre-written code

that can be used in their programs.

 Compatibility with C: C++ is largely backwards-compatible with C, which means that

many C programs can be easily converted to C++.

Here are some examples of applications that use C++:

 Operating systems: Many operating systems, including Windows and macOS, are

written in C++.

 Game development: C++ is a popular language for game development due to its high

performance and support for OOP.

963

 Web browsers: Both Google Chrome and Mozilla Firefox are built using C++.

 Financial software: C++ is often used in financial software due to its speed and ability

to handle large amounts of data.

 Industrial automation: Many industrial automation systems use C++ for their control

software due to its real-time performance and ability to interface with hardware.

Here are some specific examples of disadvantages of using C++:

 Memory management: As mentioned before, C++ requires manual memory

management. This can lead to memory leaks, which occur when memory is not properly

deallocated, leading to wasted memory and potential crashes. For example, consider the

following code:

In this code, memory is allocated twice for ptr without deallocating the first allocation.

This creates a memory leak.

 Complexity: C++ can be complex to learn and use, especially for beginners. For

example, consider the following code:

int* ptr = new int;

ptr = new int;

class Rectangle {

 int width, height;

public:

 Rectangle(int w, int h) {

 width = w;

 height = h;

 }

 int area() {

 return width * height;

 }

};

int main() {

 Rectangle rect(5, 10);

 std::cout << "Area: " << rect.area() << std::endl;

 return 0;

}

964

This code defines a class Rectangle with a constructor and a method area(). While

this is a simple example, it illustrates the complexity of the C++ syntax and the need to

understand concepts such as classes and methods.

 Security vulnerabilities: C++ is susceptible to security vulnerabilities such as buffer

overflows. For example, consider the following code:

This code copies the string "Hello world!" into a buffer that is only 8 bytes long. This can

lead to a buffer overflow, where the extra characters overwrite adjacent memory,

potentially leading to a security vulnerability.

 Compiler compatibility issues: Different compilers can produce different results when

compiling C++ code. For example, consider the following code:

The output of this code is undefined because the order in which the expressions x++ and ++x

are evaluated is not specified by the C++ standard. This can lead to compatibility issues

between different compilers and environments.

 Lack of garbage collection: C++ does not have automatic garbage collection, which

means that the programmer is responsible for managing memory manually. For example,

consider the following code:

int main() {

 char buffer[8];

 std::strcpy(buffer, "Hello world!");

 return 0;

}

int main() {

 int x = 0;

 std::cout << x++ << ++x << std::endl;

 return 0;

}

965

This code allocates memory for an integer using new, and then deallocates the memory using

delete. If the programmer forgets to deallocate the memory, a memory leak can occur. If

the programmer deallocates the memory twice, the program can crash.

 Slow development time: C++ can be slower to develop in than other languages such as

Python or Ruby, due to its complex syntax and manual memory management.

It's worth noting that many of these disadvantages can be mitigated with careful coding practices

and the use of libraries and frameworks that provide higher-level abstractions for memory

management and other tasks.

Here are some amazing facts about C++:

 C++ is often described as a "high-level" language, but it was actually created as a

successor to the "low-level" language C. The "++" in C++ refers to the fact that it is an

"incremented" version of C.

 The C++ standard has over 1,400 pages, making it one of the longest programming

language standards in existence.

 The name "C++" was chosen by its creator, Bjarne Stroustrup, because it is a play on

the increment operator "++". He originally wanted to name it "C with Classes", but the

name was already taken.

 C++ is known for its ability to perform low-level memory manipulation, but it also

includes support for object-oriented programming and other high-level concepts.

 C++ is often used for performance-critical applications such as video games and

operating systems. This has led to the creation of a community of programmers who are

passionate about optimizing their code for maximum speed and efficiency.

int* ptr = new int;

// ...

delete ptr;

966

 C++ has been used to create some of the most popular software in the world, including

Microsoft Windows, Adobe Photoshop, and Google Chrome.

 C++ has a reputation for being a difficult language to learn and use, but many

programmers find it rewarding and even fun to work with.

 There are many puns and jokes related to C++ and programming in general. For example,

"Why did the C++ developer break up with the Java developer? Because she didn't

like his class."

"There are only two kinds of languages: the ones people

complain about and the ones nobody uses."

― Bjarne Stroustrup, The C++ Programming Language

967

JAVA – OVERVIEW

Java is a popular programming language that was created in the mid-1990s by James

Gosling and his team at Sun Microsystems. It is a general-purpose, high-level, object-

oriented programming language that is designed to be platform-independent, meaning that

it can be run on any operating system or platform that has a Java Virtual Machine (JVM).

Java is widely used for developing a variety of applications, including desktop applications,

web applications, mobile applications, and enterprise applications. It is also used for

developing software for embedded systems and Internet of Things (IoT) devices. Some

key features of Java include:

 Object-Oriented Programming (OOP): Java is a fully object-oriented programming

language, meaning that it uses objects to represent data and behavior.

 Platform Independence: Java code can be compiled into bytecode, which can be run

on any platform that has a JVM installed.

 Garbage Collection: Java has an automatic memory management system that frees up

memory automatically when it is no longer needed.

 Exception Handling: Java has a built-in mechanism for handling errors and exceptions

in a program.

 Multithreading: Java supports multithreading, which allows multiple threads to run

simultaneously within a program.

 Standard Library: Java comes with a vast standard library that provides a wide range

of useful functions and classes.

Java is widely used in industries such as finance, healthcare, and technology, and it is also

used extensively in education for teaching programming concepts. Many popular software

applications, such as Adobe Creative Suite and Minecraft, are built on Java. Additionally,

Java is used for developing Android apps, making it a popular choice for mobile

development.

968

Here's an example of how to write "Hello, world!" in Java:

Now, let's break down what this code is doing:

 The public keyword means that this class is accessible to code outside of its own

package.

 The class keyword is used to declare a new class.

 MyClass is the name of the class. The class name must match the file name.

 The opening and closing curly braces { } define the boundaries of the class definition.

 public static void main(String[] args) is the declaration of the main method,

which is the entry point of the program. It is required for every Java program.

 The System.out.println() statement prints the string "Hello, world!" to the console.

When you run this program, the output will be:

Java comments are used to provide information or explanation about the code to other

developers who may read the code. Comments are not executed by the computer and do not

affect the code's functionality. There are three types of comments in Java:

 Single-line comments − These comments are created using // and are used to explain a

single line of code. Everything after the // is ignored by the compiler.

Example:

public class MyClass {

 public static void main(String[] args) {

 System.out.println("Hello, world!");

 }

}

Hello, world!

969

 Multi-line comments − These comments are created using /* to start and */ to end the

comment block. They can span across multiple lines of code.

Example:

 Javadoc comments − These comments are created using /** to start and */ to end the

comment block. They are used to provide documentation about classes, methods, and

fields, and are used by JavaDoc tools to create API documentation.

Example:

// This is a single-line comment

int x = 5; // this assigns the value 5 to x

/*

This is a multi-line comment

It can span across multiple lines

*/

int y = 10;

/**

 * This is a Javadoc comment. It is used to provide documentation for a class,

 * method or field.

 * In this example, we are defining a class called ExampleClass.

 */

public class ExampleClass {

 /**

 * This is a Javadoc comment for the ExampleMethod method. It explains what the

 * method does and what it returns.

 * @param x an integer parameter

 * @return the sum of x and y

 */

 public int ExampleMethod(int x) {

 int y = 5;

 return x + y;

 }

}

970

Overall, comments are a useful tool for developers to explain their code and improve its readability.

In Java, a variable is a named memory location used to store data. A variable can hold

different types of data, such as integers, floating-point numbers, characters, and strings. Here are

some examples of how to use variables in Java:

1. Declaring and initializing an integer variable:

2. Declaring and initializing a floating-point variable:

3. Declaring and initializing a character variable:

4. Declaring and initializing a string variable:

5. Declaring and initializing a boolean variable:

6. Declaring multiple variables at once:

int x; // declaring an integer variable

x = 10; // initializing the variable with the value 10

float y = 3.14f; // declaring and initializing a float variable with the value 3.14

char c = 'a'; // declaring and initializing a character variable with the value 'a'

String name = "John"; // declaring and initializing a string variable with the value "John"

boolean flag = true; // declaring and initializing a boolean variable with the value true

int a, b, c; // declaring three integer variables at once

a = 1;

b = 2;

c = 3;

971

7. Using a variable in an expression:

Overall, variables are an essential part of Java programming, and they allow developers to

store and manipulate data in their programs.

In Java, data types are used to classify the type of data that a variable can hold. Java has two

categories of data types: primitive data types and reference data types.

Primitive Data Types: Primitive data types are the most basic data types in Java, and they are

used to store simple values such as integers, floating-point numbers, characters, and boolean

values. There are eight primitive data types in Java:

 byte: Used to store integer values from -128 to 127.

 short: Used to store integer values from -32,768 to 32,767.

 int: Used to store integer values from -2,147,483,648 to 2,147,483,647.

 long: Used to store integer values from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807.

 float: Used to store floating-point numbers with a precision of 6 to 7

decimal digits.

 double: Used to store floating-point numbers with a precision of 15

decimal digits.

 char: Used to store single characters such as 'a' or 'b'.

 boolean: Used to store either true or false values.

Reference Data Types: Reference data types are used to store complex objects and are created

using classes or interfaces. These data types refer to a memory location where the object is

stored, rather than storing the object directly. Examples of reference data types include String,

Arrays, and Class objects.

int x = 10;

int y = 20;

int sum = x + y; // using the variables x and y to calculate the sum

972

Here are some examples of how to declare and use data types in Java:

1. Declaring and initializing a variable of type int:

2. Declaring and initializing a variable of type double:

3. Declaring and initializing a variable of type char:

4. Declaring and initializing a variable of type String:

5. Declaring and initializing an array of integers:

Overall, data types are used to define the type of data that a variable can hold in Java. The

primitive data types are used to store simple values, while reference data types are used to store

complex objects. Understanding data types is important for writing effective Java programs.

int x = 10; // initializing an int variable with the value 10

double pi = 3.14159; // initializing a double variable with the value 3.14159

char c = 'a'; // initializing a char variable with the value 'a'

String name = "John"; // initializing a String variable with the value "John"

int[] arr = {1, 2, 3, 4}; // initializing an integer array with the values 1, 2, 3, and 4

973

Java Type Casting is the process of converting the value of one data type to another data

type. This is necessary when you want to use a value of one data type in an expression that

expects another data type. In Java, there are two types of type casting: explicit and implicit.

 Explicit Type Casting: This is when you convert a data type to another data type

explicitly by specifying the target type in parentheses before the value being cast. For

example:

In this example, we convert a double value to an int value using explicit type casting. The value

of the double variable d is cast to an int value and stored in the int variable i. Note that this may

result in data loss as the decimal part of the double value is truncated.

 Implicit Type Casting: This is when you convert a data type to another data type

implicitly by the compiler. Implicit type casting occurs when the data type of the target

variable is larger than the data type of the source variable. For example:

In this example, we convert an int value to a float value using implicit type casting. The

value of the int variable i is automatically cast to a float value and stored in the float variable f.

Note that this does not result in data loss as the float data type is larger than the int data type.

It is important to note that type casting can result in data loss or overflow if the target data type is

not large enough to hold the value of the source data type. In such cases, you may need to use

additional logic to handle such scenarios.

double d = 3.14;

int i = (int) d;

int i = 10;

float f = i;

974

Java operators are symbols or keywords that perform certain operations on one or more

operands. They are classified into different categories based on their functionality. Here are

some of the commonly used operators in Java:

 Arithmetic Operators: These operators are used to perform mathematical operations

such as addition, subtraction, multiplication, division, and modulus. The following table

shows the arithmetic operators in Java:

Operator Description

+ Addition

− Subtraction

* Multiplication

/ Division

% Modulus (Remainder)

 Assignment Operators: These operators are used to assign a value to a variable. The

following table shows the assignment operators in Java:

975

Operator Example Same As

= a = 10; a = 10;

+= a += 10; a = a + 10;

−= a −= 10; a = a − 10;

*= a *= 10; a = a * 10;

/= a /= 10; a = a / 10;

%= a %= 10; a = a % 10;

 Comparison Operators: These operators are used to compare two values and return a

boolean value (true or false). The following table shows the comparison operators in

Java:

976

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

 Logical Operators: These operators are used to combine two or more boolean

expressions and return a boolean value. The following table shows the logical

operators in Java:

Operator Description

977

&& Logical AND

! Logical NOT

 Increment and Decrement Operators: These operators are used to increase or decrease

the value of a variable by 1. The following table shows the increment and decrement

operators in Java:

Operator Description

++ Increment by 1

−− Decrement by 1

 Bitwise Operators: These operators are used to perform bitwise operations on binary

numbers. The following table shows the bitwise operators in Java:

Operator Description

& Bitwise AND

978

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

<< Left Shift

>> Right Shift

>>> Unsigned Right Shift

These are the main categories of Java operators. Understanding and using these operators

correctly is important for writing efficient and effective Java code.

In Java, a String is an object that represents a sequence of characters. Strings are widely

used in Java programming, and here are some examples of how to work with strings in Java:

1. Creating a String:

String greeting = "Hello, world!";

979

In this example, we create a String variable called greeting and initialize it with the value

"Hello, world!".

2. Concatenating Strings:

In this example, we concatenate two String variables, firstName and lastName, with a space

in between, and store the result in a new String variable called fullName.

3. Getting the Length of a String:

In this example, we get the length of a String variable called text using the length() method

and store the result in an integer variable called length.

4. Comparing Strings:

In this example, we compare two String variables, str1 and str2, using the equals() method

and store the result in a boolean variable called result.

5. Converting Strings to Numbers:

String firstName = "John";

String lastName = "Doe";

String fullName = firstName + " " + lastName;

String text = "This is a text string.";

int length = text.length();

String str1 = "Hello";

String str2 = "World";

boolean result = str1.equals(str2);

980

In this example, we convert a String variable called str to an integer variable using the

parseInt() method of the Integer class.

6. Substring:

In this example, we get a substring of a String variable called text starting from index 8 and

ending at index 12, and store the result in a new String variable called subString. These are

just a few examples of how to work with Strings in Java. Strings are very versatile and there are

many other methods and operations that can be performed on them.

In Java, the Math class provides a set of static methods for performing various mathematical

operations. Here are some commonly used methods from the Math class in Java:

 Math.abs(): This method returns the absolute value of a number. For example,

Math.abs(-5) would return 5.

 Math.ceil(): This method returns the smallest integer greater than or equal to

the specified number. For example, Math.ceil(3.2) would return 4.0.

 Math.floor(): This method returns the largest integer less than or equal to

the specified number. For example, Math.floor(3.9) would return 3.0.

 Math.round(): This method returns the closest integer to the specified number.

For example, Math.round(3.2) would return 3.

 Math.max(): This method returns the greater of two numbers. For example,

Math.max(3, 5) would return 5.

 Math.min(): This method returns the smaller of two numbers. For example,

Math.min(3, 5) would return 3.

String str = "123";

int num = Integer.parseInt(str);

String text = "This is a text string.";

String subString = text.substring(8, 12);

981

 Math.pow(): This method returns the value of the first argument raised to the

power of the second argument. For example, Math.pow(2, 3) would return 8.0.

 Math.sqrt(): This method returns the square root of a number. For example,

Math.sqrt(25) would return 5.0.

 Math.random(): This method returns a random number between 0.0 and 1.0. For

example, Math.random() would return a value between 0.0 and 1.0 (exclusive).

 Math.PI: This is a constant in the Math class that represents the value of pi

(approximately 3.141592653589793). It can be used in mathematical calculations

that involve circles, such as calculating the circumference or area of a

circle.

These are just a few examples of the methods available in the Math class. There are many other

methods available for performing more complex mathematical operations. The Math class is an

essential part of Java programming and is used extensively in many applications.

In Java, boolean is a primitive data type that can only have two values: true or false.

Boolean values are used to represent logical values in Java programming. Here are some

examples of how to work with booleans in Java:

1. Declaring a Boolean Variable:

In this example, we declare a boolean variable called isRaining and initialize it with the value true.

2. Comparing Boolean Values:

boolean isRaining = true;

boolean a = true;

boolean b = false;

boolean result = a && b;

982

In this example, we compare two boolean variables, a and b, using the logical AND operator

(&&) and store the result in a boolean variable called result.

3. Using Boolean Values in Control Statements:

In this example, we use a boolean variable called isRaining in an if-else statement to

determine whether to bring an umbrella or leave it at home.

4. Returning Boolean Values from Methods:

In this example, we define a method called isEven that takes an integer argument and returns a

boolean value indicating whether the number is even or not.

5. Using Boolean Operators:

boolean isRaining = true;

if (isRaining) {

 System.out.println("Bring an umbrella.");

} else {

 System.out.println("Leave the umbrella at home.");

}

public static boolean isEven(int num) {

 return (num % 2 == 0);

}

boolean a = true;

boolean b = false;

boolean result1 = a && b; // logical AND

boolean result2 = a || b; // logical OR

boolean result3 = !a; // logical NOT

983

In this example, we use three different boolean operators (&&, ||, and !) to combine and

negate boolean values. These are just a few examples of how to work with booleans in Java.

Boolean values are an important part of programming in Java and are used extensively in many

applications.

In Java, the if...else statement is used to execute different blocks of code depending on

whether a particular condition is true or false. The basic syntax for if...else is as follows:

Here, condition is a boolean expression that evaluates to either true or false. If the condition is

true, the code inside the first set of curly braces is executed. If the condition is false, the code

inside the second set of curly braces is executed. For example, let's say we want to write a Java

program that checks whether a given number is positive or negative. We can use if...else to

accomplish this as follows:

if (condition) {

 // code to execute if the condition is true

} else {

 // code to execute if the condition is false

}

public class MyClass {

 public static void main(String[] args) {

 int number = -7;

 if (number > 0) {

 System.out.println(number + " is positive");

 } else {

 System.out.println(number + " is negative");

 }

 }

}

984

In this example, we declare an integer variable called number and initialize it to −7. We then use

if...else to check whether number is greater than 0. Since −7 is less than 0, the condition is

false, so the code inside the else block is executed. This code simply prints a message to the

console indicating that number is negative. If number had been positive, the code inside the if

block would have been executed instead, printing a message indicating that number is positive.

In Java, the switch statement provides a way to execute different blocks of code based on the

value of a single variable or expression. The basic syntax for switch is as follows:

Here, expression is the variable or expression that we want to compare against the different

cases. Each case statement specifies a value that expression might take, and the code inside

the corresponding block is executed if expression has that value. If none of the cases match,

the code inside the default block is executed. For example, let's say we want to write a Java

program that prints the name of a month based on its number (1 for January, 2 for February,

etc.). We can use switch to accomplish this as follows:

switch (expression) {

 case value1:

 // code to execute if expression == value1

 break;

 case value2:

 // code to execute if expression == value2

 break;

 ...

 case valueN:

 // code to execute if expression == valueN

 break;

 default:

 // code to execute if none of the cases match

}

985

public class MyClass {

 public static void main(String[] args) {

 int month = 5;

 switch (month) {

 case 1:

 System.out.println("January");

 break;

 case 2:

 System.out.println("February");

 break;

 case 3:

 System.out.println("March");

 break;

 case 4:

 System.out.println("April");

 break;

 case 5:

 System.out.println("May");

 break;

 case 6:

 System.out.println("June");

 break;

 case 7:

 System.out.println("July");

 break;

 case 8:

 System.out.println("August");

 break;

 case 9:

 System.out.println("September");

 break;

 case 10:

 System.out.println("October");

 break;

 case 11:

 System.out.println("November");

 break;

 case 12:

 System.out.println("December");

 break;

 default:

 System.out.println("Invalid month number");

 }

 }

}

986

In this example, we declare an integer variable called month and initialize it to 5, which

corresponds to May. We then use switch to check the value of month. Since month is equal to

5, the case 5 is matched and the code inside the corresponding block is executed, which simply

prints the name of the month "May". If month had been a different value, the corresponding case

block would have been executed instead, or if none of the cases matched, the code inside the

default block would have been executed.

In Java, loops are used to execute a block of code repeatedly while a certain condition is true.

There are three types of loops in Java: for, while, and do...while.

1. for loop

The for loop is used to execute a block of code for a fixed number of times. The basic

syntax for "for" is as follows:

Here, initialization is an expression that initializes a loop control variable, condition is

a boolean expression that is evaluated before each iteration of the loop, and update is an

expression that is evaluated after each iteration of the loop. The code inside the curly braces is

executed repeatedly as long as condition is true. For example, let's say we want to write a

Java program that prints the numbers from 1 to 10. We can use "for" to accomplish this as

follows:

for (initialization; condition; update) {

 // code to execute repeatedly

}

public class MyClass {

 public static void main(String[] args) {

 for (int i = 1; i <= 10; i++) {

 System.out.println(i);

 }

 }

}

987

In this example, we use "for" to initialize a loop control variable i to 1, execute the loop as

long as i is less than or equal to 10, and increment i by 1 after each iteration. The code inside

the curly braces simply prints the value of i to the console.

2. while loop

The while loop is used to execute a block of code as long as a certain condition is true. The

basic syntax for while is as follows:

Here, condition is a boolean expression that is evaluated before each iteration of the loop.

The code inside the curly braces is executed repeatedly as long as condition is true. For

example, let's say we want to write a Java program that prints the numbers from 1 to 10 using

a while loop. We can accomplish this as follows:

In this example, we initialize a loop control variable i to 1 before entering the loop. We then use

while to execute the loop as long as i is less than or equal to 10. The code inside the curly

braces simply prints the value of i to the console and increments i by 1 after each iteration.

while (condition) {

 // code to execute repeatedly

}

public class MyClass {

 public static void main(String[] args) {

 int i = 1;

 while (i <= 10) {

 System.out.println(i);

 i++;

 }

 }

}

988

3. do...while loop

The do...while loop is similar to the while loop, but the condition is evaluated after

the code inside the loop is executed, so the code is guaranteed to execute at least once.

The basic syntax for do...while is as follows:

Here, condition is a boolean expression that is evaluated after each iteration of the

loop. The code inside the curly braces is executed repeatedly until condition is false.

For example, let's say we want to write a Java program that prints the numbers from 1 to

10 using a do...while loop. We can accomplish this as follows:

In this example, we initialize a loop control variable i to 1 before entering the loop. We then use

do...while to execute the loop at least once, printing the value of i to the console and

incrementing i by 1 after each iteration. The loop continues to execute as long as i is less than

or equal to 10. One important thing to note about do...while loops is that the code block

inside the loop is guaranteed to execute at least once, regardless of whether the condition is true

do {

 // code to execute repeatedly

} while (condition);

public class MyClass {

 public static void main(String[] args) {

 int i = 1;

 do {

 System.out.println(i);

 i++;

 } while (i <= 10);

 }

}

989

or false. This makes do...while loops particularly useful when you need to execute a block of

code at least once before checking a condition.

In Java, an array is a data structure that allows you to store a collection of elements of the

same type in a contiguous memory location. Arrays are one of the fundamental data structures in

programming, and they are used extensively in Java and many other programming languages. To

declare an array in Java, you need to specify the type of the elements and the size of the array.

The syntax for declaring an array is as follows:

Here, type is the type of the elements in the array, arrayName is the name of the array variable,

and size is the number of elements in the array. For example, to declare an array of 5 integers,

you would use the following code:

Once you have declared an array, you can access its elements using an index. The index of the

first element in the array is 0, and the index of the last element is (size – 1). You can access

an element in the array using the following syntax:

Here, arrayName is the name of the array variable, and index is the index of the element you

want to access. For example, to assign a value of 10 to the first element of the numbers array,

you would use the following code:

type[] arrayName = new type[size];

int[] numbers = new int[5];

arrayName[index]

numbers[0] = 10;

990

Arrays can also be initialized with values at the time of declaration using an array initializer.

The syntax for initializing an array is as follows:

Here, type is the type of the elements in the array, arrayName is the name of the array variable,

and value1, value2, ..., valueN are the values to be stored in the array. For example, to

declare and initialize an array of 3 integers with values of 1, 2, and 3, you would use the

following code:

Arrays can also be used with loops to iterate over their elements. For example, to print all the

elements in the numbers array, you could use a "for" loop as follows:

Here, numbers.length gives the size of the numbers array, and the loop iterates over all the

elements in the array, printing each element to the console. Arrays are an important data

structure in Java, and they are used extensively in many applications for the following reasons:

• Grouping Data: Arrays allow you to group related data of the same type into a single

data structure. This makes it easier to manage and manipulate the data as a whole.

• Efficient Access: Arrays provide efficient access to their elements through their index,

which allows you to quickly retrieve or modify a specific element in the array.

type[] arrayName = {value1, value2, ..., valueN};

int[] numbers = {1, 2, 3};

for (int i = 0; i < numbers.length; i++) {

 System.out.println(numbers[i]);

}

991

• Iteration: Arrays can be easily iterated over using loops, which allows you to perform

operations on all the elements in the array.

• Memory Efficiency: Arrays store their elements in contiguous memory locations, which

makes them more memory-efficient than other data structures that require more complex

memory allocation.

• Passing Arrays to Methods: Arrays can be passed as arguments to methods, which

allow you to reuse code and perform operations on arrays in a modular and reusable way.

• Sorting and Searching: Arrays provide built-in methods for sorting and searching their

elements, which makes it easier to perform these operations without having to write your

own algorithms.

In addition to these benefits, arrays are also widely used in many algorithms and data

structures, such as sorting algorithms, binary search trees, and hash tables. Overall, arrays are an

important data structure in Java that provide a powerful and efficient way to group and manage

related data.

In Java, a method is a block of code that performs a specific task or set of tasks. Methods

provide a way to modularize code and reuse it in different parts of a program. Methods can also

accept parameters and return values, which make them more flexible and powerful. To define a

method in Java, you need to specify its name, return type (if any), and parameter list (if any).

The syntax for defining a method is as follows:

Here, accessModifier specifies the visibility of the method (e.g. public, private,

protected, or no modifier), returnType specifies the type of value that the method returns

(or void if it doesn't return anything), methodName is the name of the method, and

accessModifier returnType methodName(parameterList) {

 // method body

}

992

parameterList is a comma-separated list of parameters that the method accepts (if any). For

example, the following method "add" takes two integers as parameters and returns their sum:

Once a method is defined, it can be called from other parts of the program using its name and

passing in the necessary arguments. For example, to call the "add" method defined above, you

would use the following code:

Methods can also be overloaded, which means you can define multiple methods with the same

name but different parameter lists. Java determines which method to call based on the number

and types of arguments passed to the method. For example, the following method "add" is an

overloaded version of the method defined above that takes three integers as parameters and

returns their sum:

Overall, methods are an important concept in Java that provides a powerful way to organize

code and make it more reusable and flexible.

Here's an example of a simple method in Java:

public int add(int x, int y) {

 int sum = x + y;

 return sum;

}

int result = add(3, 5);

System.out.println(result); // Output: 8

public int add(int x, int y, int z) {

 int sum = x + y + z;

 return sum;

}

993

In this example, we define a class called Example that contains a single method called hello.

The "hello" method simply prints the string "Hello, world!" to the console using the

System.out.println statement. In the main method, we call the hello method using the

method name and the parentheses operator. When the program runs, it will print the message

"Hello, world!" to the console. Here's another example of a method that accepts parameters and

returns a value:

public class Example {

 public static void main(String[] args) {

 // Call the hello method

 hello();

 }

 // Define the hello method

 public static void hello() {

 System.out.println("Hello, world!");

 }

}

public class Example {

 public static void main(String[] args) {

 // Call the add method with two integers

 int result = add(2, 3);

 System.out.println(result); // Output: 5

 }

 // Define the add method that accepts two integers and returns their sum

 public static int add(int x, int y) {

 int sum = x + y;

 return sum;

 }

}

994

In this example, we define a method called add that accepts two integer parameters and returns

their sum. In the main method, we call the add method with the integers 2 and 3, and assign the

result to the "result" variable. We then print the value of "result" to the console, which

should be 5.

Java is an object-oriented programming language, which means that it revolves around the

concept of classes and objects. Classes are blueprints for creating objects, and objects are

instances of a class. In simpler terms, a class defines the properties and behaviors of an object,

while an object is a specific instance of that class with its own unique values. Let's take an

example to understand this concept better. Suppose we want to create a class named "Person"

that has the properties of "name", "age", and "gender". We can define the class as follows:

In this class, we have defined three properties: "name" (a string), "age" (an integer), and

"gender" (a character). Now that we have defined our class, we can create an object of this

class using the "new" keyword as follows:

Here, we have created an object named "person1" of the "Person" class. Now, we can set the

values for the properties of this object as follows:

public class Person {

 String name;

 int age;

 char gender;

}

Person person1 = new Person();

person1.name = "John";

person1.age = 25;

person1.gender = 'M';

995

We can also create multiple objects of the same class, each with its own set of values, as follows:

Now we have two objects of the "Person" class: "person1" and "person2", each with their

own set of values for the properties. In addition to properties, classes can also have methods,

which are functions that can be called on an object of the class. For example, we can add a

method to the "Person" class that prints out the name and age of the person as follows:

Now, we can call the "printDetails" method on any object of the "Person" class as follows:

Person person2 = new Person();

person2.name = "Jane";

person2.age = 30;

person2.gender = 'F';

public class Person {

 String name;

 int age;

 char gender;

 public void printDetails() {

 System.out.println("Name: " + name);

 System.out.println("Age: " + age);

 }

}

person1.printDetails(); // Output: Name: John, Age: 25

person2.printDetails(); // Output: Name: Jane, Age: 30

Overall, classes are the blueprints for creating objects, and objects are specific instances of a

class with their own set of values for the properties. Classes can have properties and methods,

which define the characteristics and behavior of the objects.

996

In Java, modifiers are keywords that can be added to classes, methods, and variables to

modify their behavior or characteristics. There are two types of modifiers in Java: access

modifiers and non-access modifiers.

Access modifiers control the accessibility of classes, methods, and variables from other parts of

the program. There are four access modifiers in Java: public, private, protected, and default.

 Public: A public class, method, or variable can be accessed from any other part of the

program.

 Private: A private class, method, or variable can only be accessed within the same class.

 Protected: A protected class, method, or variable can be accessed from within the same

package or from a subclass in a different package.

 Default: A default (package-private) class, method, or variable can only be accessed

within the same package.

Non-access modifiers modify the behavior or characteristics of classes, methods, and variables.

There are several non-access modifiers in Java:

 Final: A final variable cannot be changed once it is initialized. A final method cannot be

overridden in a subclass, and a final class cannot be subclassed.

 Static: A static variable or method belongs to the class rather than an instance of the

class.

 Abstract: An abstract class or method is declared but not defined. An abstract class

cannot be instantiated, and an abstract method must be implemented by a subclass.

 Synchronized: A synchronized method can only be accessed by one thread at a time,

ensuring that the method is thread-safe.

 Volatile: A volatile variable is not cached, and its value is always read from the main

memory. This is useful for variables that are shared between threads.

By using modifiers effectively, you can control the behavior and accessibility of your classes,

methods, and variables, making your code more robust and efficient.

997

In Java, encapsulation is a mechanism that allows you to control access to the internal state

of an object. It is one of the fundamental principles of object-oriented programming and is

achieved through the use of access modifiers and getter or setter methods. Encapsulation

ensures that the internal state of an object is only modified through well-defined methods,

preventing other parts of the program from directly accessing or modifying the object's data. This

provides several benefits, including:

 Improved security: Encapsulation ensures that the internal state of an object cannot be

accessed or modified by unauthorized parts of the program.

 Improved maintainability: Encapsulation makes it easier to change the internal

implementation of an object without affecting other parts of the program.

 Improved flexibility: Encapsulation allows you to define a well-defined interface for an

object, making it easier to use in different parts of the program.

Here is an example of encapsulation in Java:

public class BankAccount {

 private double balance;

 public BankAccount(double initialBalance) {

 balance = initialBalance;

 }

 public void deposit(double amount) {

 balance += amount;

 }

 public void withdraw(double amount) {

 if (balance >= amount) {

 balance -= amount;

 }

 }

 public double getBalance() {

 return balance;

 }

}

998

In this example, the balance variable is declared as private, which means it cannot be

accessed or modified directly by other parts of the program. Instead, the deposit and

withdraw methods are used to modify the balance. The getBalance method is defined as

public, which allows other parts of the program to retrieve the current balance. This method

provides a well-defined interface for accessing the internal state of the BankAccount object,

ensuring that it is only modified through the deposit and withdraw methods. By using

encapsulation in your Java programs, you can ensure that your objects are well-defined and

secure, making them easier to maintain and more flexible to use in different parts of your

program.

In Java, a package is a way of organizing related classes and interfaces into a single unit of

code. Packages help to avoid naming conflicts and provide a mechanism for access control. A

package can contain sub-packages, classes, interfaces, and other resources like images, audio

files, etc. Java packages are identified by their package name, which is a unique identifier that is

used to distinguish them from other packages. The package name is typically written in reverse

domain name notation, such as com.example.myapp. Here is an example of how to declare a

package in Java:

In this example, the MyClass class is declared in the com.example.myapp package. To use a

class from another package, you must either import the class or use its fully qualified name. For

example:

package com.example.myapp;

public class MyClass {

 // class definition

}

import com.example.myapp.MyClass;

public class AnotherClass {

 MyClass myObject = new MyClass();

}

999

In this example, the MyClass class is imported using the import statement, and an instance of

MyClass is created using the new keyword. If you don't want to use an import statement, you

can use the fully qualified name of the class instead:

In this example, the fully qualified name of the MyClass class is used to create an instance of

the class. By using packages in your Java programs, you can organize your code into logical

units, avoid naming conflicts, and provide a mechanism for access control.

In Java, inheritance is a mechanism that allows you to create a new class based on an

existing class. The new class, called the subclass, inherits the properties and behavior of the

existing class, called the superclass, and can also add its own properties and behavior.

Inheritance is one of the fundamental principles of object-oriented programming and is used to

create a hierarchy of related classes. The superclass is at the top of the hierarchy, and the

subclasses are below it. Here is an example of inheritance in Java:

public class AnotherClass {

 com.example.myapp.MyClass myObject = new com.example.myapp.MyClass();

}

public class Animal {

 private String name;

 private int age;

 public Animal(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public void eat() {

 System.out.println(name + " is eating.");

 }

1000

In this example, the Animal class is the superclass, and the Cat class is the subclass. The Cat

class inherits the name and age properties from the Animal class and adds its own method,

meow. To create an instance of the Cat class, you can use the following code:

In this example, the myCat object is an instance of the Cat class and can access the eat, sleep,

and meow methods. By using inheritance in your Java programs, you can create a hierarchy of

related classes that share common properties and behavior, making your code more modular and

easier to maintain.

There are four types of inner classes in Java:

 public void sleep() {

 System.out.println(name + " is sleeping.");

 }

}

public class Cat extends Animal {

 public Cat(String name, int age) {

 super(name, age);

 }

 public void meow() {

 System.out.println("Meow!");

 }

}

Cat myCat = new Cat("Fluffy", 2);

myCat.eat(); // outputs "Fluffy is eating."

myCat.sleep(); // outputs "Fluffy is sleeping."

myCat.meow(); // outputs "Meow!"

In Java, an inner class is a class that is defined inside another class. Inner classes are a powerful

feature of Java that allows you to logically group classes and interfaces in one place, and to

encapsulate them inside another class.

1001

There are four types of inner classes in Java:

 Member Inner Class: A member inner class is defined inside a class and can access the

members of the enclosing class, including private members. To create an instance of a

member inner class, you must first create an instance of the enclosing class.

 Local Inner Class: A local inner class is defined inside a method or a block, and can

only be accessed within that method or block. Local inner classes are typically used to

define an implementation of an interface or an abstract class.

 Anonymous Inner Class: An anonymous inner class is a local inner class that does not

have a name. Anonymous inner classes are typically used to define an implementation of

an interface or an abstract class on the fly.

 Static Nested Class: A static nested class is a class that is defined inside another class,

but is not an inner class. Static nested classes can only access static members of the

enclosing class.

Here is an example of a member inner class:

In this example, the InnerClass is a member inner class of the OuterClass. The printX

method of the InnerClass can access the private x variable of the OuterClass. To create an

instance of the InnerClass, you must first create an instance of the OuterClass:

public class OuterClass {

 private int x = 10;

 class InnerClass {

 public void printX() {

 System.out.println(x);

 }

 }

}

1002

In this example, the innerObject is an instance of the InnerClass and can access the

private x variable of the OuterClass. By using inner classes in your Java programs, you can

create more modular and organized code, and encapsulate related classes and interfaces inside

another class. Inner classes can also access the members of the enclosing class, which can be

useful in certain situations.

Java abstraction and interfaces are two important concepts in object-oriented programming

that help in achieving modular, maintainable, and reusable code. Abstraction is the process of

hiding the implementation details of a class or an object and exposing only the necessary

information to the user. It is one of the key principles of object-oriented programming and is

used to simplify complex systems by breaking them down into smaller, more manageable pieces.

In Java, abstraction is achieved through abstract classes and interfaces. An abstract class is a

class that cannot be instantiated, and is used as a base class for other classes. It contains one or

more abstract methods, which are declared but not implemented in the abstract class. The

subclasses of an abstract class must implement all the abstract methods declared in the abstract

class. Here is an example of an abstract class in Java:

OuterClass outerObject = new OuterClass();

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

innerObject.printX(); // outputs "10"

public abstract class Shape {

 protected String color;

 public Shape(String color) {

 this.color = color;

 }

public abstract double getArea();

public abstract double getPerimeter();

1003

In this example, the Shape class is an abstract class that contains two abstract methods getArea

and getPerimeter. The subclasses of the Shape class, such as Circle and Rectangle, must

implement these methods. An interface in Java is similar to an abstract class, but it only contains

abstract methods and constant fields. An interface is a contract between the interface and the

implementing class, specifying the methods that must be implemented by the implementing

class. Here is an example of an interface in Java:

In this example, the Drawable interface contains only one method draw. Any class that

implements the Drawable interface must implement the draw method. Interfaces can also

extend other interfaces, allowing for multiple inheritance. Here is an example:

In this example, the Shape interface extends the Drawable interface and contains two abstract

methods getArea and getPerimeter. By using abstraction and interfaces in your Java

public String getColor() {

 return color;

 }

}

public interface Drawable {

 public void draw();

}

public interface Shape extends Drawable {

 public double getArea();

 public double getPerimeter();

}

1004

programs, you can create modular, maintainable, and reusable code. Abstraction allows you to

hide the implementation details of a class and expose only the necessary information to the user,

while interfaces allow you to define a contract between the interface and the implementing class,

specifying the methods that must be implemented by the implementing class.

In Java, an enum is a special type of class that represents a fixed set of constants. Enums are

useful when you have a predefined set of values that a variable can take, and you want to restrict

the values that the variable can have. An enum is defined using the enum keyword, and the

constants are listed inside the curly braces. Here is an example of an enum in Java:

In this example, the Day enum represents the days of the week, and the constants are the days

themselves. Each constant is implicitly declared as a public static final field of the enum type.

You can use an enum in your Java program by declaring a variable of the enum type. Here is an

example:

In this example, the variable today is declared as an instance of the Day enum, and is initialized

to the MONDAY constant. You can also use enums in switch statements, which can make your

code more readable and maintainable. Here is an example:

public enum Day {

 MONDAY,

 TUESDAY,

 WEDNESDAY,

 THURSDAY,

 FRIDAY,

 SATURDAY,

 SUNDAY

}

Day today = Day.MONDAY;

1005

In this example, the switch statement is used to print a message depending on the value of the

today variable. Enums can also have fields, constructors, and methods, just like regular classes.

Here is an example:

switch (today) {

 case MONDAY:

 System.out.println("It's Monday!");

 break;

 case TUESDAY:

 System.out.println("It's Tuesday!");

 break;

 // ... other cases ...

 default:

 System.out.println("It's not a weekday!");

 break;

}

public enum Day {

 MONDAY("Monday"),

 TUESDAY("Tuesday"),

 WEDNESDAY("Wednesday"),

 THURSDAY("Thursday"),

 FRIDAY("Friday"),

 SATURDAY("Saturday"),

 SUNDAY("Sunday");

 private final String name;

 private Day(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

1006

In this example, the Day enum has a name field, a constructor that takes a name parameter, and

a getName method that returns the name field. Enums are a powerful feature of Java that can

make your code more readable and maintainable by restricting the values that a variable can

have, and by providing a type-safe way to represent a fixed set of constants.

Here's an example of how to take user input in Java using the Scanner class:

import java.util.Scanner;

public class MyClass {

 public static void main(String[] args) {

 // create a Scanner object to read input from the user

 Scanner scanner = new Scanner(System.in);

 // prompt the user to enter their name

 System.out.print("Please enter your name: ");

 // read the user's input as a String

 String name = scanner.nextLine();

 // prompt the user to enter their age

 System.out.print("Please enter your age: ");

 // read the user's input as an integer

 int age = scanner.nextInt();

 // print out the user's name and age

 System.out.println("Hello, " + name + ". You are " + age + " years old.");

 // remember to close the Scanner object

 scanner.close();

 }

}

1007

In this example, we use the Scanner class to read user input from the console. We first create

a Scanner object and pass in System.in as the argument, which represents the standard input

stream (i.e., the console). We then prompt the user to enter their name using the

System.out.print() method, and read their input as a String using the nextLine() method

of the Scanner object. We do the same for the user's age, but read the input as an integer using

the nextInt() method. Finally, we print out the user's name and age using the

System.out.println() method, and remember to close the Scanner object using the

close() method.

In Java, ArrayList is a class that provides a resizable array implementation. Unlike regular

arrays, ArrayList can dynamically grow or shrink its size as needed, making it more flexible

and convenient to use in certain scenarios. Here's an example of how to create and use an

ArrayList in Java:

import java.util.ArrayList;

public class MyClass {

 public static void main(String[] args) {

 // create an empty ArrayList of integers

 ArrayList<Integer> numbers = new ArrayList<>();

 // add some numbers to the list

 numbers.add(5);

 numbers.add(3);

 numbers.add(8);

 numbers.add(1);

 // print out the entire list

 System.out.println(numbers); // output: [5, 3, 8, 1]

1008

 // get the size of the list

 int size = numbers.size();

 System.out.println("The size of the list is " + size);

 // output: The size of the list is 4

 // access an element by index

 int first = numbers.get(0);

 System.out.println("The first element is " + first);

 // output: The first element is 5

 // modify an element by index

 numbers.set(1, 7);

 System.out.println(numbers); // output: [5, 7, 8, 1]

 // remove an element by index

 numbers.remove(2);

 System.out.println(numbers); // output: [5, 7, 1]

 // check if an element is in the list

 boolean containsSeven = numbers.contains(7);

 System.out.println("Does the list contain 7? " + containsSeven);

 // output: Does the list contain 7? true

 // iterate through the list

 for (int number : numbers) {

 System.out.println(number);

 }

 }

}

1009

In this example, we first create an empty ArrayList of integers by using the

ArrayList<Integer> syntax. We then add some numbers to the list using the add() method,

and print out the entire list using the System.out.println() method. We then demonstrate

some common methods of ArrayList, including getting the size of the list using the size()

method, accessing an element by index using the get() method, modifying an element by index

using the set() method, removing an element by index using the remove() method, checking

if an element is in the list using the contains() method, and iterating through the list using a

for-each loop. Note that ArrayList can also store objects of other types besides integers, such

as strings or custom objects, by simply changing the type parameter in the ArrayList<>

syntax.

In Java, HashMap is a class that provides a hash table implementation of the Map interface. A

HashMap stores key-value pairs, where each key is unique and maps to a corresponding value.

HashMap provides fast lookup and insertion operations, making it useful in many applications.

Here's an example of how to create and use a HashMap in Java:

import java.util.HashMap;

public class MyClass {

public static void main(String[] args) {

// create an empty HashMap with keys of type String and values of type Integer

 HashMap<String, Integer> scores = new HashMap<>();

// add some scores to the map

 scores.put("Alice", 80);

 scores.put("Bob", 90);

 scores.put("Charlie", 85);

// get the score for a specific key

 int aliceScore = scores.get("Alice");

1010

In this example, we first create an empty HashMap with keys of type String and values of type

Integer by using the HashMap<String, Integer> syntax. We then add some key-value

pairs to the map using the put() method, and retrieve a value for a specific key using the get()

method. We then demonstrate some common methods of HashMap, including checking if a key

is in the map using the containsKey() method, updating the value for a key using the put()

method, removing a key-value pair from the map using the remove() method, and iterating

through the keys in the map using the keySet() method and a for-each loop. Note that

System.out.println("Alice's score is " + aliceScore); // output: Alice's score is 80

 // check if a key is in the map

 boolean hasBob = scores.containsKey("Bob");

 System.out.println("Does the map have Bob? " + hasBob);

 // output: Does the map have Bob? true

 // update the score for a key

 scores.put("Charlie", 90);

 System.out.println("Charlie's new score is " + scores.get("Charlie"));

 // output: Charlie's new score is 90

 // remove a key-value pair from the map

 scores.remove("Alice");

 System.out.println("The map now has " + scores.size() + " entries");

 // output: The map now has 2 entries

 // iterate through the keys in the map

 for (String key : scores.keySet()) {

 int value = scores.get(key);

 System.out.println(key + ": " + value);

 }

 }

}

1011

HashMap can also store objects of other types besides strings and integers, such as custom

objects, by simply changing the type parameters in the HashMap<> syntax.

In Java, HashSet is a class that provides a hash table implementation of the Set interface. A

HashSet stores a collection of unique elements, where the order of the elements is not

guaranteed. HashSet provides fast insertion and lookup operations, making it useful in many

applications where uniqueness of elements is a requirement. Here's an example of how to create

and use a HashSet in Java:

import java.util.HashSet;

public class MyClass {

public static void main(String[] args) {

 // create an empty HashSet of strings

 HashSet<String> names = new HashSet<>();

 // add some names to the set

 names.add("Alice");

 names.add("Bob");

 names.add("Charlie");

 // add a duplicate name

 names.add("Alice");

 // print out the entire set
 System.out.println(names); // output: [Charlie, Alice, Bob]

 // get the size of the set

 int size = names.size();

 System.out.println("The size of the set is " + size);

 // output: The size of the set is 3

1012

In this example, we first create an empty HashSet of strings by using the HashSet<String>

syntax. We then add some names to the set using the add() method, including a duplicate name

to demonstrate that HashSet only stores unique elements. We print out the entire set using the

System.out.println() method, which shows that the order of the elements is not

guaranteed. We then demonstrate some common methods of HashSet, including getting the size

of the set using the size() method, checking if an element is in the set using the contains()

method, removing an element from the set using the remove() method, and iterating through

the set using a for-each loop. Note that HashSet can also store objects of other types besides

strings, such as integers or custom objects, by simply changing the type parameter in the

HashSet<> syntax.

In Java, Iterator is an interface that provides a way to traverse a collection of elements, such

as an ArrayList or a HashSet. An Iterator allows you to sequentially access the elements

 // check if an element is in the set

 boolean containsBob = names.contains("Bob");

 System.out.println("Does the set contain Bob? " + containsBob);

 // output: Does the set contain Bob? true

 // remove an element from the set

 names.remove("Charlie");

 System.out.println(names); // output: [Alice, Bob]

 // iterate through the set

 for (String name : names) {

 System.out.println(name);

 }

 }

1013

in a collection, one at a time, without exposing the underlying implementation of the collection.

Here's an example of how to use an Iterator in Java:

In this example, we first create an ArrayList of integers and add some elements to it. We then

create an Iterator for the ArrayList using the iterator() method. We iterate through the

ArrayList using the hasNext() and next() methods of the Iterator interface, which

allow us to check if there are more elements in the collection and retrieve the next element,

respectively. The output of this program would be:

import java.util.ArrayList;

import java.util.Iterator;

public class MyClass {

 public static void main(String[] args) {

 // create an ArrayList of integers

 ArrayList<Integer> numbers = new ArrayList<>();

 numbers.add(1);

 numbers.add(2);

 numbers.add(3);

 // create an iterator for the ArrayList

 Iterator<Integer> iterator = numbers.iterator();

 // iterate through the ArrayList using the iterator

 while (iterator.hasNext()) {

 int number = iterator.next();

 System.out.println(number);

 }

 }

}

1014

Note that the Iterator interface also provides a remove() method, which allows you to

remove the current element from the collection while iterating through it. This method should

only be used when iterating through a collection using an Iterator, as it may cause unexpected

behavior when used with other types of loops.

In Java, wrapper classes are classes that provide a way to represent primitive data types

(such as int, double, boolean, etc.) as objects. This is useful when you need to treat primitive

types as objects, for example when you need to pass them to methods that require objects as

arguments. Here is a list of the eight wrapper classes in Java:

 Boolean: wraps a boolean value

 Byte: wraps a byte value

 Short: wraps a short value

 Integer: wraps an int value

 Long: wraps a long value

 Float: wraps a float value

 Double: wraps a double value

 Character: wraps a char value

Here's an example of how to use a wrapper class in Java:

1

2

3

Integer myInt = new Integer(42);

System.out.println("The value of myInt is " + myInt.toString());

1015

In this example, we create an Integer object myInt that wraps the int value 42. We then use

the toString() method of the Integer class to convert the value to a string and print it out.

Wrapper classes also provide useful methods for converting between primitive types and

objects, and for performing arithmetic and comparison operations on objects. For example:

In this example, we create an Integer object x with the value 5, and then use the intValue()

method to convert it to an int value y. We then use the valueOf() method of the Integer

class to convert y back to an Integer object z. Finally, we use the compareTo() method of

the Integer class to compare x and z and print out the result.

In Java, exceptions are a way to handle errors or unexpected situations that occur during the

execution of a program. The try-catch block is a mechanism in Java for handling exceptions.

It consists of two parts:

 The try block, where the code that might throw an exception is placed.

 The catch block(s), where the exception is caught and handled.

The syntax of a try-catch block is as follows:

Integer x = 5;

int y = x.intValue(); // convert Integer to int

Integer z = Integer.valueOf(y); // convert int to Integer

System.out.println(x.compareTo(z)); // compare two Integer objects

try {

 // code that might throw an exception

} catch (ExceptionType1 e1) {

 // code to handle exception of type ExceptionType1

} catch (ExceptionType2 e2) {

 // code to handle exception of type ExceptionType2

} finally {

 // optional code that always executes, whether or not an exception is thrown

}

1016

When an exception is thrown within the try block, the catch block is executed. If the exception

matches the type of the first catch block, that block is executed. If not, the exception is passed to

the next catch block, and so on. If no catch block matches the exception type, the exception is

not caught and the program terminates. The finally block is optional and always executes,

whether or not an exception is thrown. This block is typically used to perform cleanup tasks,

such as closing files or releasing resources, which need to be done regardless of whether an

exception occurs. Here's an example of using a try-catch block in Java:

In this example, the try block performs a division by zero, which will throw an

ArithmeticException. The catch block catches the exception, prints an error message, and the

program continues to execute. The finally block prints a message indicating that it always

executes.

In Java, regular expressions are a powerful tool for searching, replacing, and

manipulating text. A regular expression, also known as regex, is a pattern that describes a set of

strings. Java provides the java.util.regex package for working with regular expressions.

The two main classes in this package are Pattern and Matcher.

Here's an example of using regular expressions in Java to match a string:

try {

 int result = 10 / 0; // this will throw an ArithmeticException

} catch (ArithmeticException e) {

 System.out.println("Error: " + e.getMessage());

} finally {

 System.out.println("This code always executes");

}

1017

In this example, we create a Pattern object using the compile() method of the Pattern class.

The argument to compile() is the regular expression we want to match, which in this case is

the string "fox". We then create a Matcher object using the matcher() method of the Pattern

class, passing in the input string we want to search. We call the find() method of the Matcher

object to search for the pattern within the input string. If the pattern is found, the find() method

returns true, and we print a message indicating that a match was found.

Some common regular expression syntax in Java includes:

 . : matches any single character

 * : matches zero or more occurrences of the preceding character or group

 + : matches one or more occurrences of the preceding character or group

 ? : matches zero or one occurrence of the preceding character or group

 [] : matches any one of the characters within the brackets

 () : groups a series of characters together as a subexpression

import java.util.regex.*;

public class MyClass {

 public static void main(String[] args) {

 String input = "The quick brown fox jumps over the lazy dog.";

 Pattern pattern = Pattern.compile("fox");

 Matcher matcher = pattern.matcher(input);

 if (matcher.find()) {

 System.out.println("Match found!");

 } else {

 System.out.println("Match not found.");

 }

 }

}

1018

There are many more syntax elements available for regular expressions in Java, including

character classes, quantifiers, and special characters. Regular expressions can be complex,

but they are a powerful tool for manipulating text in Java.

In Java, threads are a mechanism for running multiple tasks concurrently within a single

program. A thread is a lightweight sub-process that can run in parallel with other threads within

the same program. In Java, threads are implemented using the java.lang.Thread class. To

create a new thread, you can either extend the Thread class and override its run() method, or

implement the Runnable interface and pass an instance of that class to a Thread object. Here's

an example of creating a new thread by extending the Thread class:

In this example, we create a new thread by extending the Thread class and overriding its run()

method. We then create an instance of this class and call its start() method. This starts a new

thread, and the code within the run() method is executed concurrently with the main thread.

Java also provides the java.util.concurrent package for working with threads and

managing concurrent access to shared resources. This package includes classes such as

public class MyThread extends Thread {

 public void run() {

 System.out.println("Thread running!");

 }

}

public class Main {

 public static void main(String[] args) {

 MyThread thread = new MyThread();

 thread.start();

 }

}

1019

Executor, ThreadPoolExecutor, and FutureTask, which can be used to create and

manage threads more easily and efficiently. When working with threads, it's important to be

aware of thread synchronization issues, such as race conditions and deadlocks. Java provides

synchronization mechanisms, such as synchronized blocks and methods, to help prevent these

issues. Here's an example of using a synchronized block in Java to prevent multiple threads

from accessing a shared resource at the same time:

public class MyRunnable implements Runnable {

 private int counter = 0;

 public void run() {

 synchronized(this) {

 for (int i = 0; i < 10; i++) {

 counter++;

 }

 }

 }

}

public class Main {

 public static void main(String[] args) {

 MyRunnable runnable = new MyRunnable();

 Thread thread1 = new Thread(runnable);

 Thread thread2 = new Thread(runnable);

 thread1.start();

 thread2.start();

 // wait for threads to finish

 try {

 thread1.join();

 thread2.join();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 System.out.println("Counter: " + runnable.counter);

 }

}

1020

In this example, we create a new Runnable object that contains a counter variable. We then

create two Thread objects that share the same Runnable object, and start both threads. The code

within the run() method increments the counter variable using a synchronized block, which

ensures that only one thread can access the block at a time. Finally, we wait for both threads to

finish using the join() method, and print the final value of the counter variable.

In Java, the java.io package provides classes for working with files and directories. The File

class represents a file or directory on the file system, and provides methods for creating, deleting,

reading, and writing files. Here's an example of creating a new file and writing to it in Java:

In this example, we create a new File object called "myfile.txt" using the File constructor.

We then create a FileWriter object and pass in the File object to write to the file. We write the

string "Hello, world!" to the file using the write() method of the FileWriter object, and then

import java.io.*;

public class FileExample {

 public static void main(String[] args) {

 try {

 File file = new File("myfile.txt");

 FileWriter writer = new FileWriter(file);

 writer.write("Hello, world!");

 writer.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

1021

close the writer using the close() method. Java also provides classes for reading from files,

such as FileReader and BufferedReader. Here's an example of reading from a file using

BufferedReader:

In this example, we create a new BufferedReader object that wraps a FileReader object.

We read each line from the file using the readLine() method of the BufferedReader

object, and print it to the console using System.out.println(). We continue reading lines

until we reach the end of the file, indicated by a null return value from readLine(). Finally, we

close the reader using the close() method. Other useful methods provided by the File class

include:

 exists() : checks whether a file or directory exists

 isFile() : checks whether a file exists and is a regular file

 isDirectory() : checks whether a file exists and is a directory

import java.io.*;

public class FileExample {

 public static void main(String[] args) {

 try {

 File file = new File("myfile.txt");

 BufferedReader reader = new BufferedReader(new FileReader(file));

 String line = null;

 while ((line = reader.readLine()) != null) {

 System.out.println(line);

 }

 reader.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

1022

 delete() : deletes a file or directory

 mkdir() : creates a new directory

 list() : returns an array of the names of files and directories in a directory

These methods can be used to perform a wide range of file and directory operations in Java.

Java has several advantages that make it a popular programming language for developing a wide

range of applications. Some of these advantages include:

 Platform independence: Java is platform-independent, meaning that a Java program can

run on any platform without requiring any modification. This is because Java programs

are compiled into bytecode that can be run on any platform that has a Java Virtual

Machine (JVM) installed. For example, a Java program written on Windows can be run

on a Linux or Mac OS X system without any modifications.

 Object-oriented programming: Java is an object-oriented programming (OOP)

language, which means that it follows a programming paradigm based on the concept of

objects. This makes it easier to write reusable and modular code, which can help reduce

development time and increase code maintainability. For example, a Java program can

define classes that represent real-world entities, such as customers or products, and use

them to create instances of those entities.

 Large standard library: Java has a large standard library that provides a wide range of

useful classes and methods for performing common programming tasks, such as reading

and writing files, networking, and database access. This can help reduce the amount of

custom code that developers need to write, and make it easier to develop complex

applications. For example, the java.net package provides classes for performing network

operations, such as opening and closing sockets, while the java.util package provides

classes for working with collections, such as arrays and lists.

 Memory management: Java provides automatic memory management, meaning that the

Java Virtual Machine automatically handles memory allocation and deallocation for Java

programs. This helps reduce the likelihood of memory leaks and other memory-related

errors that can cause programs to crash or behave unpredictably.

1023

 Multithreading: Java provides built-in support for multithreading, which allows multiple

threads to run concurrently within the same program. This can help improve program

performance by allowing tasks to be executed in parallel, and can also make it easier to

write concurrent programs that handle multiple users or tasks. For example, a Java web

application can use multithreading to handle multiple requests from different users

simultaneously.

Overall, these advantages make Java a versatile and popular programming language that can be

used for a wide range of applications, from desktop and mobile applications to web and

enterprise applications. Using Java has certain drawbacks in addition to its many benefits. The

following are some of the primary drawbacks of Java:

 Performance: Java is an interpreted language which means it can be slower than

compiled languages like C++ or Fortran. For example, if you are running a CPU-

intensive application like a video game, Java may not be the best choice because it could

impact the performance.

 Memory Management: Java uses automatic garbage collection which can be a

disadvantage in situations where fine-grained control over memory is required. For

example, in embedded systems or high-performance computing where memory is a

limited resource, Java may not be the best choice because it can lead to memory leaks.

 Security: Although Java provides a secure sandbox environment, it is still vulnerable to

security issues. For example, the Java security model can be circumvented if a user runs

a malicious applet or application that exploits vulnerabilities in the Java Virtual Machine

(JVM).

 Complexity: Java has a steep learning curve, especially for beginners. For example, the

syntax of Java can be confusing, and it requires a lot of boilerplate code to accomplish

even simple tasks.

 Compatibility: Java is not always compatible with older versions of itself. For example,

if you write code using the latest version of Java, it may not run on older versions of Java

without modifications.

1024

 Overhead: Java requires a significant amount of memory to run, and it can be resource-

intensive. For example, if you are running multiple Java applications on a single

machine, it can consume a significant amount of resources and slow down the system.

It's important to note that many of these disadvantages can be mitigated through careful design

and optimization of your Java applications. Additionally, Java has many advantages, such

as its portability, that may make it a better choice for some projects than other programming

languages.

Here are some funny facts about Java:

 Java is known for its slogan "Write Once, Run Anywhere," but some developers

joke that it really means "Write Once, Debug Everywhere."

 Java was originally called "Oak" because the developers liked the oak tree outside their

office. However, when they found out that name was already trademarked, they had to

change it to "Java."

 The first version of Java was released in 1996, and it included a lot of bugs. One of the

bugs was so bad that it caused the program to crash if you typed in the word "true" as a

variable name.

 Some developers refer to Java as "Just Another Vague Acronym" because of the

many different interpretations of what the name means.

 Java has been the subject of many jokes and memes in the programming community,

including a popular meme that shows a picture of a coffee cup with the caption "I

drink Java for breakfast."

 One of the features of Java is its ability to run code in a sandbox environment, which led

to the joke that "Java is to JavaScript as ham is to hamster."

While these may be funny, it's important to remember that Java is a powerful and widely-used

programming language that has many practical applications.

1025

Java is a versatile programming language with many practical applications in a wide range of

industries. Here are some examples of applications of Java:

 Web Applications: Java is used to develop server-side applications and dynamic

websites using technologies like JSP (JavaServer Pages), Servlets, Spring, and Struts.

 Mobile Applications: Java is used to develop Android applications, which are used by

billions of users around the world.

 Desktop Applications: Java is used to develop desktop applications like Eclipse,

NetBeans, and OpenOffice.

 Enterprise Applications: Java is used to develop large-scale enterprise applications such

as banking systems, financial management systems, and inventory management systems.

 Scientific Applications: Java is used to develop scientific and mathematical applications,

such as those used in data analysis, simulations, and modeling.

 Gaming: Java is used to develop games, such as Minecraft, which is one of the most

popular video games of all time.

 Internet of Things (IoT): Java is used to develop IoT applications and devices, such as

smart homes and wearable technology.

 Big Data: Java is used to develop big data applications, such as Hadoop and Spark,

which are used to process and analyze large amounts of data.

These are just a few examples of the many applications of Java. Its flexibility and versatility

make it a popular choice for developers across many industries.

"One of the things that Java is good at is giving you this

homogeneous view of a reality that's usually very heterogeneous."

− James Gosling

1026

PYTHON − OVERVIEW

Introduced in 1991, Python is an interpreted, high-level, all-purpose programming language. It has

become one of the most popular programming languages in the world due to its simplicity,

versatility, and ease of use. Here are some details about Python:

 Interpreted Language: Python runs without needing to be compiled because it is an

interpreted language. The Python interpreter reads the code and executes it line by line,

making it easier to test and debug code.

 High-Level Language: Python is a high-level language, which means that it abstracts away

much of the underlying machine-level operations, making it easier to read and write code.

This also makes Python easier to learn than low-level languages like assembly language.

 General-Purpose Language: Python is a general-purpose language, which means that it can

be used for a wide range of applications, from web development and data analysis to

scientific computing and artificial intelligence.

 Object-Oriented Language: Python is an object-oriented language, which means that it

uses objects to represent data and behavior. This makes it easier to organize and manage

code, and also allows for code reuse.

 Dynamic Typing: Python is dynamically typed, which means that the data type of a variable

is determined at runtime, rather than being explicitly declared in the code. This allows for

more flexible and expressive code, but can also lead to errors if types are not checked

carefully.

 Garbage Collection: Python uses automatic garbage collection to manage memory, which

means that the interpreter automatically frees up memory that is no longer being used by the

program.

 Standard Library: Python comes with a large standard library that includes modules for

tasks such as file I/O, network programming, regular expressions, and more. This makes it

easy to perform many common programming tasks without needing to write additional code.

 Third-Party Libraries: Python also has a vast ecosystem of third-party libraries, including

popular ones like NumPy, Pandas, TensorFlow, and Django, which extend the functionality

of Python and allow it to be used for even more applications.

1027

Here is the "Hello World" program in Python:

When you run this program, it will output the message "Hello, World!" to the console. This is a

simple example of how to use the print function in Python to output text.

In Python, you can add comments to your code to make it more readable and to explain what the

code is doing. Comments are ignored by the Python interpreter, so they do not affect the

behavior of your program. Here are some examples of Python comments:

Single-line comments:

In this example, the # character indicates that the rest of the line is a comment. Anything

following the # character on the same line will be ignored by the Python interpreter.

Multi-line comments:

 Syntax: Python has a simple and easy-to-read syntax that emphasizes readability and reduces

the cost of program maintenance. Indentation is used to indicate block structure, and there are

no semicolons or curly braces to clutter the code.

 Portability: Python code can be run on many different platforms, including Windows, Mac,

Linux, and Unix, making it a highly portable language.

Overall, Python's simplicity, versatility, and ease of use make it a great choice for a wide range of

programming tasks.

print("Hello, World!")

This is a single-line comment in Python

"""

This is a multi-line comment in Python.

It can span multiple lines and is enclosed in triple quotes.

"""

1028

In this example, the comment is enclosed in triple quotes ("""). This allows the comment to

span multiple lines. However, multi-line comments are not commonly used in Python because

single-line comments are usually sufficient. Comments can also be used to temporarily disable

code, for testing or debugging purposes. Here's an example:

In this example, the print("Hello, World!") statement is commented out. This means that

it will not be executed when the program is run. However, if you later need to re-enable the code,

you can simply remove the # characters. Comments are an important tool for making your code

more readable and understandable, both for yourself and for others who may need to read or

modify your code. By adding comments, you can explain what your code is doing, why you

made certain design decisions, and any other important information that will help others

understand your code.

In Python, variables are used to store data values. They are like containers that hold values that

can be accessed and manipulated throughout the program. Here are some examples and

explanations of variables in Python:

 Numeric Variables: Numeric variables are used to store numerical values such as

integers or floating-point numbers.

In this example, x is an integer variable that stores the value 10 and y is a floating-point variable

that stores the value 3.14.

This line of code is currently not needed

print("Hello, World!")

Example of numeric variables

x = 10

y = 3.14

1029

 String Variables: String variables are used to store text values. They are enclosed in

either single quotes ('') or double quotes ("").

In this example, name is a string variable that stores the value "John Doe" and message is a

string variable that stores the value "Hello World!".

 Boolean Variables: Boolean variables are used to store boolean values, which are either

True or False.

In this example, is_python_fun is a boolean variable that stores the value True and is_coding_hard

is a boolean variable that stores the value False.

 List Variables: List variables are used to store a collection of values, which can be of different

data types. Lists are created by enclosing the values in square brackets [] and separating them

with commas.

Example of string variables

name = "John Doe"

message = 'Hello World!'

Example of boolean variables

is_python_fun = True

is_coding_hard = False

Example of list variables

fruits = ['apple', 'banana', 'orange']

numbers = [1, 2, 3, 4, 5]

1030

In this example, fruits is a list variable that stores the values 'apple', 'banana', and 'orange' and

numbers is a list variable that stores the values 1, 2, 3, 4, and 5.

In Python, a dictionary is a collection of key-value pairs. It is a built-in data type that is commonly used

to store and manipulate data in a flexible and efficient way. Here are some examples of dictionary

variables in Python:

Example 1: Creating a Dictionary

Output:

In this example, we're creating a dictionary variable called person that contains three key-

value pairs. The keys are "name", "age", and "city", and the corresponding values are "John

Doe", 30, and "New York".

Example 2: Accessing Values in a Dictionary

Output:

person = {"name": "John Doe", "age": 30, "city": "New York"}

print(person)

{'name': 'John Doe', 'age': 30, 'city': 'New York'}

person = {"name": "John Doe", "age": 30, "city": "New York"}

print(person["name"])

print(person["age"])

John Doe

30

1031

In this example, we're accessing the values of the "name" and "age" keys in the person dictionary

using square bracket notation. The values are then printed to the console.

Example 3: Updating a Dictionary

Output:

In this example, we're updating the value of the "age" key in the person dictionary from 30 to 31

using square bracket notation. The updated dictionary is then printed to the console.

Example 4: Adding a Key-Value Pair to a Dictionary

Output:

In this example, we're adding a new key-value pair to the person dictionary using square bracket

notation. The new key is "state" and the value is "New York". The updated dictionary is then

printed to the console.

person = {"name": "John Doe", "age": 30, "city": "New York"}

person["age"] = 31

print(person)

{'name': 'John Doe', 'age': 31, 'city': 'New York'}

person = {"name": "John Doe", "age": 30, "city": "New York"}

person["state"] = "New York"

print(person)

{'name': 'John Doe', 'age': 30, 'city': 'New York', 'state': 'New York'}

1032

Example 5: Deleting a Key-Value Pair from a Dictionary

Output:

In this example, we're deleting the key-value pair for the "city" key in the person dictionary

using the del statement. The updated dictionary without the "city" key is then printed to the

console. These are just a few examples of variables in Python. Variables can hold many

different types of values and can be manipulated in various ways throughout a program.

In Python, there are three main types of numerical data: integers, floating-point numbers, and

complex numbers.

1. Integers: Integers are whole numbers, which means they do not have decimal points.

They can be positive, negative, or zero. Integers in Python are of type 'int'. For

example:

2. Floating-point numbers: Floating-point numbers are decimal numbers, which means

they have decimal points. They can be positive, negative, or zero. Floating-point numbers

in Python are of type 'float'. For example:

person = {"name": "John Doe", "age": 30, "city": "New York"}

del person["city"]

print(person)

{'name': 'John Doe', 'age': 30}

x = 5

y = -10

z = 0

1033

Complex numbers: Complex numbers are numbers with both real and imaginary parts. They are

expressed in the form a + bj, where a and b are real numbers and j is the imaginary unit (square

root of -1). Complex numbers in Python are of type 'complex'. For example:

Here are some examples of using these types of numerical data in Python:

a = 3.14

b = -2.5

c = 0.0

d = 2 + 3j

e = -4j

f = 1.5 - 2j

Integer arithmetic

x = 5

y = 3

print(x + y) # Output: 8

print(x - y) # Output: 2

print(x * y) # Output: 15

print(x / y) # Output: 1.6666666666666667

print(x // y) # Output: 1 (integer division)

print(x % y) # Output: 2 (modulus or remainder)

Floating-point arithmetic

a = 3.14

b = 2.0

print(a + b) # Output: 5.14

print(a - b) # Output: 1.14

1034

In addition to the basic arithmetic operations shown above, Python provides many built-in

functions for working with numerical data. Here are some commonly used functions:

 abs(): Returns the absolute value of a number.

 round(): Rounds a number to the nearest integer or to a specified number of decimal

places.

 pow(): Raises a number to a specified power.

 min(): Returns the minimum value of a sequence of numbers.

print(a * b) # Output: 6.28

print(a / b) # Output: 1.57

Complex arithmetic

d = 2 + 3j

e = -4j

print(d + e) # Output: (2-1j)

print(d - e) # Output: (2+5j)

print(d * e) # Output: (-12+8j)

print(d / e) # Output: (0.75-0.5j)

print(abs(-5)) # Output: 5

print(abs(5)) # Output: 5

print(round(3.14159)) # Output: 3

print(round(3.14159, 2)) # Output: 3.14

print(pow(2, 3)) # Output: 8

print(pow(2, -3)) # Output: 0.125

1035

 max(): Returns the maximum value of a sequence of numbers.

 sum(): Returns the sum of a sequence of numbers.

 sqrt(): Returns the square root of a number.

 floor(): Returns the largest integer less than or equal to a number.

 ceil(): Returns the smallest integer greater than or equal to a number.

 random(): Generates a random float between 0 and 1.

print(min(1, 2, 3)) # Output: 1

print(min(-1, -2, -3)) # Output: -3

print(max(1, 2, 3)) # Output: 3

print(max(-1, -2, -3)) # Output: -1

print(sum([1, 2, 3])) # Output: 6

import math

print(math.sqrt(16)) # Output: 4.0

import math

print(math.floor(3.7)) # Output: 3

import math

print(math.ceil(3.7)) # Output: 4

import random

print(random.random()) # Output: a random float between 0 and 1

1036

These are just a few examples of the many built-in functions available for working with

numerical data in Python.

In Python, casting refers to the process of converting one data type to another. Here are some

examples of casting in Python:

 int(): Converts a value to an integer.

 float(): Converts a value to a floating-point number.

 str(): Converts a value to a string.

 bool(): Converts a value to a Boolean value.

 list(): Converts a sequence to a list.

x = 5.7

print(int(x)) # Output: 5

x = 5

print(float(x)) # Output: 5.0

x = 5

print(str(x)) # Output: "5"

x = 0

print(bool(x)) # Output: False

x = (1, 2, 3)

print(list(x)) # Output: [1, 2, 3]

1037

 tuple(): Converts a sequence to a tuple.

 set(): Converts a sequence to a set.

 dict(): Converts a sequence of key-value pairs to a dictionary.

Casting is useful when you need to convert data from one type to another. For example, you

may need to convert a string input to a numeric type in order to perform mathematical operations

on it. Casting can also be used to convert data between Python's built-in data structures, such

as lists and tuples, or to convert data between different types of collections, such as converting a

sequence to a set.

In Python, a string is a sequence of characters enclosed in either single quotes (' ') or double

quotes (" "). Strings are a fundamental data type in Python and are widely used in

programming. Here are some examples of strings:

x = [1, 2, 3]

print(tuple(x)) # Output: (1, 2, 3)

x = [1, 2, 3, 2]

print(set(x)) # Output: {1, 2, 3}

x = [("a", 1), ("b", 2), ("c", 3)]

print(dict(x)) # Output: {'a': 1, 'b': 2, 'c': 3}

string1 = 'Hello, world!'

string2 = "This is a string."

string3 = "1234"

1038

In the examples above, string1 and string2 are string literals that contain alphanumeric

characters and punctuation. string3 is a string that contains only digits. Python strings support

several operations such as indexing, slicing, concatenation, repetition, and more. Let's discuss

some of these operations in more detail below:

 Indexing

Indexing allows you to access individual characters in a string. The index of the first character is

0, and the index of the last character is -1. You can use square brackets to specify the index of

the character you want to access.

 Slicing

Slicing allows you to extract a portion of a string. You can specify a range of indices to extract

using the start:end syntax. The start index is inclusive, and the end index is exclusive.

 Concatenation

Concatenation allows you to join two or more strings together using the + operator.

string = 'Hello, world!'

print(string[0]) # Output: 'H'

print(string[4]) # Output: 'o'

print(string[-1]) # Output: '!'

string = 'Hello, world!'

print(string[0:5]) # Output: 'Hello'

print(string[7:]) # Output: 'world!'

string1 = 'Hello, '

string2 = 'world!'

string3 = string1 + string2

print(string3) # Output: 'Hello, world!'

1039

 Repetition

Repetition allows you to repeat a string multiple times using the * operator.

 Length

You can find the length of a string using the len() function.

 Formatting

String formatting allows you to insert values into a string using placeholders. There are several

ways to do string formatting in Python, but the most common method is to use the .format()

method.

Overall, strings are a powerful and versatile data type in Python that can be used to

manipulate and store text data.

Python operators are special symbols that carry out operations on variables and values. Python

provides various types of operators, including arithmetic operators, comparison operators, logical

operators, and assignment operators. Here's a brief overview of Python operators:

string = 'Hello, '

print(string * 3) # Output: 'Hello, Hello, Hello, '

string = 'Hello, world!'

print(len(string)) # Output: 13

name = 'Alice'

age = 25

print('My name is {} and I am {} years old.'.format(name, age))

Output: 'My name is Alice and I am 25 years old.'

1040

 Arithmetic Operators: These are used to perform mathematical operations, such as

addition, subtraction, multiplication, division, modulus, exponentiation, and floor

division. Examples include +, -, *, /, %, **, and //.

 Comparison Operators: These are used to compare two values and return a boolean

value (True or False). Examples include ==, !=, >, <, >=, and <=.

 Logical Operators: These are used to combine or invert boolean expressions. Examples

include and, or, and not.

 Assignment Operators: These are used to assign a value to a variable. Examples

include =, +=, -=, *=, /=, %=, and //=.

 Bitwise Operators: These are used to perform bitwise operations on integers. Examples

include &, |, ^, ~, <<, and >>.

 Membership Operators: These are used to test if a value is a member of a sequence.

Examples include in and not in.

 Identity Operators: These are used to test if two variables point to the same object.

Examples include is and is not.

You can use these operators in your Python code to perform various operations on variables and

values. For example:

a = 5

b = 2

print(a + b) # Output: 7

print(a - b) # Output: 3

print(a * b) # Output: 10

print(a / b) # Output: 2.5

print(a % b) # Output: 1

print(a ** b) # Output: 25

print(a // b) # Output: 2

1041

a = 5

b = 2

print(a == b) # Output: False

print(a != b) # Output: True

print(a > b) # Output: True

print(a < b) # Output: False

print(a >= b) # Output: True

print(a <= b) # Output: False

a = 5

b = 2

c = 0

print(a > b and b > c) # Output: True

print(a < b or b > c) # Output: True

print(not a == b) # Output: True

Using the `in` operator

fruits = ['apple', 'banana', 'cherry', 'orange']

if 'banana' in fruits:

 print("Yes, banana is in the fruits list.")

Output: Yes, banana is in the fruits list.

if 'pear' in fruits:

 print("Yes, pear is in the fruits list.")

else:

 print("No, pear is not in the fruits list.")

Output: No, pear is not in the fruits list.

1042

In the first example, we check if 'banana' is in the fruits list using the in operator, and it

returns True. In the second example, we check if 'pear' is in the fruits list using the in

operator, and it returns False, so we print "No, pear is not in the fruits list." In the third example,

we check if 'pineapple' is not in the fruits list using the not in operator, and it returns True.

In the fourth example, we check if 'orange' is not in the fruits list using the not in operator,

and it returns False, so we print "No, orange is in the fruits list."

In Python, a list is an ordered collection of items or elements that can be of any data type. Lists

are defined using square brackets [] and each item in the list is separated by a comma. For

example:

Using the `not in` operator

if 'pineapple' not in fruits:

 print("Yes, pineapple is not in the fruits list.")

else:

 print("No, pineapple is in the fruits list.")

Output: Yes, pineapple is not in the fruits list.

if 'orange' not in fruits:

 print("Yes, orange is not in the fruits list.")

else:

 print("No, orange is in the fruits list.")

Output: No, orange is in the fruits list.

my_list = [1, 2, 3, 4, 5]

1043

Lists are mutable, which means that their values can be changed after they are created. You can

add, remove, or modify items in a list. Here are some examples of common operations you

can perform on lists:

 Accessing Elements: You can access individual elements of a list using their index,
which starts at 0. For example:

 Slicing: You can also access a subset of elements in a list using slicing. Slicing uses a

colon (:) to separate the start and end indices. For example:

 Appending Elements: You can add new elements to the end of a list using the

append() method. For example:

 Removing Elements: You can remove elements from a list using the remove() method.

For example:

 Checking if an Element is in a List: You can check if an element is in a list using the in

keyword. For example:

print(my_list[0]) # Output: 1

print(my_list[1:3]) # Output: [2, 3]

my_list.append(6)

print(my_list) # Output: [1, 2, 3, 4, 5, 6]

my_list.remove(3)

print(my_list) # Output: [1, 2, 4, 5, 6]

print(3 in my_list) # Output: False

1044

Lists are a very powerful data structure in Python and are used extensively in many different

applications.

In Python, a tuple is an ordered, immutable collection of elements that can contain any type of

data. Tuples are created using parentheses () and each element is separated by a comma. Here

is an example of creating a tuple:

Tuples can also be created without parentheses, by simply separating the elements with commas:

Tuples can contain elements of different types, including other tuples:

Tuples are immutable, which means that once a tuple is created, its elements cannot be

changed. However, if a tuple contains mutable objects like lists, the objects inside the tuple can

be modified. Tuples can be accessed using indexing, which starts from 0. Here's an example

of accessing the first element of a tuple:

Tuples also support slicing, which allows you to extract a portion of the tuple. Here's an

example of getting the first two elements of a tuple:

my_tuple = (1, 2, 3, 'hello', True)

my_tuple = 1, 2, 3, 'hello', True

nested_tuple = ((1, 2), ('a', 'b', 'c'), True)

first_element = my_tuple[0]

first_two_elements = my_tuple[:2]

1045

Tuples support several built-in methods like count() and index(). The count() method

returns the number of times a specified element appears in the tuple, while the index() method

returns the index of the first occurrence of a specified element in the tuple.

Tuples are often used to group related data together. For example, a tuple can be used to

represent a point in a 2D coordinate system:

Tuples can also be used to return multiple values from a function:

In the above example, the function get_name_and_age() returns a tuple containing the name

and age. These values are then assigned to the variables name and age using tuple unpacking.

Python sets are a built-in data structure that allows you to store a collection of unique

elements. The elements of a set can be of any immutable data type, such as numbers, strings, or

tuples. The syntax for creating a set is to enclose a comma-separated list of elements in curly

braces ({}) or by using the set() constructor function. For example:

my_tuple = (1, 2, 3, 'hello', True, 1, 2, 3)

count_of_1 = my_tuple.count(1) # returns 2

index_of_hello = my_tuple.index('hello') # returns 3

point = (3, 4)

def get_name_and_age():

 name = 'John'

 age = 30

 return name, age

name, age = get_name_and_age()

1046

Note that when creating an empty set, you must use the set() constructor, as {} creates an

empty dictionary in Python. Some of the key characteristics of sets are:

1. Sets only store unique elements: If you try to add an element to a set that already exists

in the set, it will be ignored.

2. Sets are unordered: Unlike lists and tuples, sets do not maintain any particular order for

their elements.

3. Sets are mutable: You can add and remove elements from a set after it has been created.

Here are some common operations you can perform with sets in Python:

 Adding elements to a set: You can add elements to a set using the add() method.

 Removing elements from a set: You can remove elements from a set using the

remove() method.

create a set using curly braces

my_set = {1, 2, 3, 4, 5}

create a set using the set() constructor

my_other_set = set([5, 6, 7, 8, 9])

my_set = {1, 2, 3}

my_set.add(4)

print(my_set) # outputs {1, 2, 3, 4}

my_set = {1, 2, 3, 4}

my_set.remove(4)

print(my_set) # outputs {1, 2, 3}

1047

 Checking if an element is in a set: You can use the in keyword to check if an element

is in a set.

 Combining sets: You can combine two sets using the union() method or the |

operator.

 Finding the intersection of sets: You can find the common elements between two sets

using the intersection() method or the & operator.

my_set = {1, 2, 3}

print(2 in my_set) # outputs True

print(4 in my_set) # outputs False

set1 = {1, 2, 3}

set2 = {3, 4, 5}

union_set = set1.union(set2)

print(union_set) # outputs {1, 2, 3, 4, 5}

using the | operator

union_set2 = set1 | set2

print(union_set2) # outputs {1, 2, 3, 4, 5}

set1 = {1, 2, 3}

set2 = {3, 4, 5}

intersection_set = set1.intersection(set2)

print(intersection_set) # outputs {3}

using the & operator

intersection_set2 = set1 & set2

print(intersection_set2) # outputs {3}

1048

 Finding the difference between sets: You can find the elements that are in one set but

not in the other using the difference() method.

In this example, set1 contains the elements {1, 2, 3} and set2 contains the elements {3,

4, 5}. The difference() method is called on set1 with set2 passed as an argument. This

returns a new set containing the elements that are in set1 but not in set2, which in this case is

{1, 2}. Alternatively, you can use the - operator to find the difference between sets:

In this example, the "-" operator is used to subtract set2 from set1, which produces the same

result as using the difference() method.

A dictionary in Python is a collection of key-value pairs, where each key is unique and

associated with a value. It is also known as an associative array, hash map or a hash table in

other programming languages. In Python, dictionaries are created using curly braces {} or the

dict() constructor function. The keys and values in a dictionary can be of any data type,

including strings, integers, floats, lists, or even other dictionaries. However, keys must be

set1 = {1, 2, 3}

set2 = {3, 4, 5}

difference_set = set1.difference(set2)

print(difference_set) # outputs {1, 2}

set1 = {1, 2, 3}
set2 = {3, 4, 5}

difference_set = set1 - set2

print(difference_set) # outputs {1, 2}

1049

immutable types such as strings, numbers or tuples. Here's an example of how to create a

dictionary in Python:

To access a value in a dictionary, you can use the key inside square brackets:

You can also add, remove or modify items in a dictionary:

Dictionaries also have several built-in methods to perform common operations, such as getting a

list of keys or values:

create a dictionary using {}

my_dict = {'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}

create a dictionary using dict()

my_dict = dict(key1='value1', key2='value2', key3='value3')

access a value using a key

my_dict['key1']

add a new key-value pair

my_dict['key4'] = 'value4'

remove a key-value pair

del my_dict['key3']

modify a value

my_dict['key2'] = 'new_value2'

1050

Overall, dictionaries are a powerful data structure in Python that allow you to store and

manipulate data in a flexible and efficient way.

In Python, if...else is a conditional statement that allows you to execute certain blocks of

code based on whether a condition is true or false. The basic syntax of an if...else statement

in Python is:

The condition is a Boolean expression that evaluates to either True or False. If the

condition is True, the code block inside the if statement is executed, and if the condition

is False, the code block inside the else statement is executed. Here's an example:

get a list of keys

my_dict.keys()

get a list of values

my_dict.values()

if condition:

 # code to execute if condition is True

else:

 # code to execute if condition is False

age = 18

if age >= 18:

 print("You are an adult.")

else:

 print("You are not an adult yet.")

1051

In this example, if the value of age is greater than or equal to 18, the message "You are an

adult." will be printed to the console. Otherwise, the message "You are not an adult yet." will be

printed. You can also add more conditions to your if...else statement using elif (short for

"else if"):

In this example, if the value of age is less than 18, the message "You are not an adult yet." will

be printed. If age is greater than or equal to 18 but less than 30, the message "You are a young

adult." will be printed. And if age is greater than or equal to 30, the message "You are an adult."

will be printed. if...else statements can also be nested inside other if...else statements to

create more complex conditions. However, it's important to keep the code readable and not to

create excessively nested statements. Overall, if...else statements are a fundamental control

structure in Python that allow you to make decisions based on conditions and execute code

accordingly.

In Python, loops are used to execute a block of code repeatedly, based on a specific condition

or range of values. There are two main types of loops in Python: for loops and while loops.

 For Loops

A for loop is used to iterate over a sequence of values (such as a list, tuple or string) or a

range of numbers. The basic syntax of a for loop in Python is:

age = 18

if age < 18:

 print("You are not an adult yet.")

elif age < 30:

 print("You are a young adult.")

else:

 print("You are an adult.")

1052

Here's an example of a for loop that iterates over a list of names and prints each name to the

console:

This loop will print:

You can also use the range() function to generate a sequence of numbers to iterate over:

This loop will print:

for variable in sequence:

 # code to execute

names = ['Alice', 'Bob', 'Charlie']

for name in names:

 print(name)

Alice

Bob

Charlie

for i in range(5):

 print(i)

0

1

2

3

4

1053

 While Loops

A while loop is used to execute a block of code repeatedly as long as a condition is true.

The basic syntax of a while loop in Python is:

Here's an example of a while loop that counts from 0 to 4 and prints each number to the

console:

This loop will print:

You need to be careful with while loops, because if the condition is never met, the loop will

continue to run indefinitely, causing what's known as an infinite loop. You can use break and

continue statements to control the flow of the loop and exit early if necessary.

Loop Control Statements

In addition to break and continue, there are other loop control statements you can use in Python:

while condition:

 # code to execute

i = 0

while i < 5:

 print(i)

 i += 1

0

1

2

3

4

1054

 break: exits the loop immediately, skipping any remaining iterations.

 continue: skips the current iteration and goes to the next one.

 pass: does nothing, used as a placeholder when a statement is required but you don't

want to execute any code.

Here's an example of a for loop that uses break and continue:

This loop will print:

The loop starts at 0 and goes up to 9. When i is equal to 5, the break statement is executed,

and the loop exits early. When i is even, the continue statement is executed, and the loop skips

the rest of the code and goes to the next iteration. Otherwise, the loop prints the value of i.

Overall, loops are a fundamental concept in programming that allows you to execute code

repeatedly and perform complex operations on large datasets.

for i in range(10):

 if i == 5:

 break

 elif i % 2 == 0:

 continue

 else:

 print(i)

1

3

7

9

1055

A function in Python is a self-contained block of code that performs a specific task. It takes

input(s) (if any), processes the input(s), and produces output(s) (if any). In Python, a function is

defined using the def keyword followed by the function name, input parameters (if any), and a

colon (:). The body of the function is indented and contains the code to be executed when the

function is called. Here is a simple example of a function that takes two input parameters,

adds them together, and returns the result:

In this example, add_numbers is the function name, x and y are the input parameters, result

is a variable that holds the sum of x and y, and return result specifies the output of the

function. To call this function, you simply provide values for x and y in the parentheses:

This will call the add_numbers function with x = 5 and y = 3, and assign the result (8) to

the variable sum. The print statement will then output the value of sum. Functions can also

have optional parameters, default values, and can return multiple values using tuples. They

can also be used to encapsulate complex operations and simplify the code by breaking it down

into smaller, reusable components.

A lambda function in Python is a small anonymous function that can have any number of

parameters, but can only have one expression. The syntax for creating a lambda function is to use

the lambda keyword followed by the parameters (if any) separated by commas, followed by a

def add_numbers(x, y):

 result = x + y

 return result

sum = add_numbers(5, 3)

print(sum) # Output: 8

1056

colon, and then the expression. Here is a simple example of a lambda function that takes two

parameters and returns their sum:

In this example, lambda is the keyword used to define the function, x and y are the parameters,

and x + y is the expression that is evaluated when the function is called. Lambda functions

are often used as a way to define small, one-off functions that can be passed as arguments to

other functions. For example, you can use a lambda function to define the key parameter for

sorting a list:

In this example, the sorted function is called with numbers as the first argument and a

lambda function as the second argument. The lambda function takes a single parameter x and

returns x, which is used as the sorting key. Lambda functions are also used in functional

programming paradigms, where they can be used to define higher-order functions that take other

functions as parameters or return functions as values.

In Python, a class is a blueprint for creating objects. An object is an instance of a class that

contains data (attributes) and functions (methods). Here is an example of a class in Python:

sum = lambda x, y: x + y

numbers = [5, 1, 3, 6, 2, 8, 4]

sorted_numbers = sorted(numbers, key=lambda x: x)

print(sorted_numbers) # Output: [1, 2, 3, 4, 5, 6, 8]

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

1057

In this example, Person is the name of the class. The __init__ method is a special method

called the constructor, which is called when an object is created. The constructor takes two

parameters, name and age, which are used to initialize the name and age attributes of the

object. The greet method is a function that takes no parameters and prints a message that

includes the name and age attributes of the object. To create an object of the Person class, you

would use the following syntax:

This creates a new object of the Person class with the name attribute set to "Alice" and the age

attribute set to 25. You can access the attributes and methods of an object using the dot (.)

operator. For example:

In this example, the name attribute of the person object is accessed using the dot operator, and

the greet method is called on the person object. Classes and objects are a fundamental

concept in object-oriented programming (OOP), which is a programming paradigm that

emphasizes the use of classes and objects to model real-world entities and their relationships.

OOP provides a way to encapsulate data and behavior into reusable and modular components,

which makes it easier to write and maintain complex software systems.

 def greet(self):

 print(f"Hello, my name is {self.name} and I am {self.age} years old.")

person = Person("Alice", 25)

print(person.name) # Output: "Alice"

person.greet() # Output: "Hello, my name is Alice and I am 25 years old."

1058

In Python, an iterator is an object that can be iterated (looped) upon. An iterator is an

implementation of the iterator protocol, which requires the iterator to have two methods:

__iter__() and __next__(). The __iter__() method returns the iterator object itself, and

the __next__() method returns the next value in the iteration sequence. When there are no

more items to return, the __next__() method should raise the StopIteration exception.

Here is an example of an iterator in Python:

In this example, MyIterator is a class that implements an iterator. The __init__() method

initializes the counter attribute of the iterator to 0. The __iter__() method returns the

iterator object itself, and the __next__() method returns the next value in the iteration

sequence. In this example, the iteration sequence consists of the numbers from 1 to 5. The

__next__() method checks if the counter attribute is less than 5. If it is, it increments the

counter attribute and returns its value. If the counter attribute is equal to or greater than 5, it

raises the StopIteration exception to indicate that there are no more items in the iteration

sequence. To use an iterator, you can use a for loop or the built-in next() function. For

example:

class MyIterator:

 def __init__(self):

 self.counter = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self.counter < 5:

 self.counter += 1

 return self.counter

 else:

 raise StopIteration

1059

In this example, the MyIterator class is instantiated as my_iterator. The for loop and

next() function are used to iterate over the values returned by the MyIterator object.

Iterators are used extensively in Python, especially with built-in functions such as range(),

map(), and filter().

In Python, JSON (JavaScript Object Notation) is a popular data interchange format that is used to

represent data structures as text. JSON is a lightweight format that is easy for humans to read

and write, and easy for machines to parse and generate. The Python standard library provides

two modules for working with JSON:

 json: This module provides methods for encoding Python objects as JSON strings and

decoding JSON strings into Python objects.

 simplejson: This is a third-party module that provides a more feature-rich JSON

implementation than the built-in json module.

Here is an example of how to use the json module to encode and decode JSON data in Python:

my_iterator = MyIterator()

Using a for loop

for num in my_iterator:

 print(num)

Using the next() function

print(next(my_iterator)) # Output: 1

print(next(my_iterator)) # Output: 2

print(next(my_iterator)) # Output: 3

print(next(my_iterator)) # Output: 4

print(next(my_iterator)) # Output: 5

print(next(my_iterator)) # Raises StopIteration exception

1060

In this example, the json.dumps() method is used to encode a Python dictionary as a JSON

string, and the json.loads() method is used to decode a JSON string into a Python

dictionary. JSON supports a limited set of data types, including strings, numbers, boolean

values, null, arrays, and objects. When encoding Python objects as JSON data, the json module

automatically converts compatible data types to their JSON equivalents. Here is an example of

encoding a Python object with the json module:

import json

Encoding Python data as a JSON string

data = {'name': 'Alice', 'age': 25}

json_data = json.dumps(data)

print(json_data) # Output: {"name": "Alice", "age": 25}

Decoding JSON data into a Python object

json_data = '{"name": "Alice", "age": 25}'

data = json.loads(json_data)

print(data) # Output: {'name': 'Alice', 'age': 25}

import json

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

person = Person("Alice", 25)

json_data = json.dumps(person.__dict__)

print(json_data) # Output: {"name": "Alice", "age": 25}

1061

In this example, a custom Python object of the Person class is created and encoded as a JSON

string using the json.dumps() method. The __dict__ attribute is used to convert the object's

attributes to a dictionary that can be encoded as JSON. JSON is commonly used in web

development for exchanging data between client and server, as well as in data storage and

transfer applications.

In Python, try and except are used for error handling. The basic idea is to try a block of code

that may raise an exception (i.e., an error), and then handle that exception if it occurs. Here's the

basic syntax:

The try block contains the code that you want to execute, and the except block contains the

code that should be executed if an exception of type ExceptionType occurs. If an exception

occurs in the try block, Python will jump to the except block and execute its code. You can

use multiple except blocks to handle different types of exceptions. For example:

try:

 # code that may raise an exception

except ExceptionType:

 # code to handle the exception

try:
 # code that may raise an exception

except TypeError:

 # code to handle a TypeError exception

except ValueError:

 # code to handle a ValueError exception

1062

If the code in the try block raises a TypeError exception, the first except block will be

executed. If it raises a ValueError exception, the second except block will be executed. You

can also include a finally block, which will be executed regardless of whether an exception

occurred or not. For example:

The finally block will be executed after the try and except blocks, regardless of whether an

exception occurred or not. This is useful for cleaning up resources or closing files, for example.

Overall, try and except are an important part of Python error handling, allowing you to

gracefully handle errors and prevent your code from crashing.

In Python, pip is a package manager used to install and manage software packages written in

Python. It makes it easy to install and uninstall Python packages, as well as manage

dependencies between packages. pip is included with most Python installations by default, and

can be accessed from the command line by typing pip followed by a command. Here are some

common pip commands:

 pip install package_name: installs a package from the Python Package Index

(PyPI) or another package repository.

 pip uninstall package_name: uninstalls a package.

 pip list: lists all installed packages.

 pip freeze: lists all installed packages in a format that can be used to

create a requirements.txt file, which is commonly used to specify the

dependencies of a Python project.

try:

 # code that may raise an exception

except ExceptionType:

 # code to handle the exception

finally:

 # code that should be executed regardless of whether an exception occurred or not

1063

 pip search package_name: searches for a package on PyPI or another package

repository.

You can also use pip to install packages from a requirements.txt file using the following

command:

This will install all the packages listed in the requirements.txt file. In addition to the standard

pip command, there are several third-party tools and libraries that extend or enhance its

functionality, such as virtualenv and conda. These tools allow you to create isolated Python

environments with their own package installations, making it easy to manage dependencies

between projects and avoid conflicts between different packages.

In Python, file handling refers to the process of working with files on the file system, such

as reading from or writing to a file. Python provides a built-in open() function to work with

files. Here's how to open a file for reading:

This opens the file filename.txt in read mode. The open() function returns a file object,

which you can use to read data from the file. To read the entire contents of the file, you can use

the read() method:

After you're done reading from the file, you should close it using the close() method:

pip install -r requirements.txt

f = open("filename.txt", "r")

data = f.read()

f.close()

1064

Here's how to open a file for writing:

This opens the file filename.txt in write mode. To write data to the file, you can use the

write() method:

After you're done writing to the file, you should close it using the close() method:

It's a good practice to always close files after you're done working with them. Alternatively, you

can use a "with" statement to automatically close the file when you're done with it:

This automatically closes the file after the "with" block is finished, even if an error occurs. In

addition to reading and writing files, you can also append to an existing file using the "a" mode,

or read and write to a file simultaneously using the "r+" or "w+" modes. For more information,

check out the Python documentation on file handling:

Python is a popular programming language for data analysis and manipulation tasks. It provides

a variety of libraries and frameworks that can be used to work with different databases, including

MySQL. MySQL is an open-source relational database management system that is widely used in

web applications. It uses SQL (Structured Query Language) to interact with the database

f = open("filename.txt", "w")

f.write("Hello, world!")

f.close()

with open("filename.txt", "r") as f:

 data = f.read()

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

1065

and perform various operations like insert, update, delete, and retrieve data. To work with

MySQL in Python, you can use a Python MySQL connector library like mysql-connector-

python, PyMySQL, or MySQLdb. These libraries provide a set of methods and classes to connect

to a MySQL database, execute SQL queries, and fetch data from the database. Here is a brief

overview of how to work with MySQL in Python:

 Install the MySQL connector library of your choice using pip:

 Connect to the MySQL database using the connect() method:

 Create a cursor object to execute SQL queries:

 Execute a SQL query using the execute() method:

 Fetch the data using the fetchall() or fetchone() method:

pip install mysql-connector-python

import mysql.connector

mydb = mysql.connector.connect(

 host="localhost",

 user="username",

 password="password",

 database="database_name"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers")

1066

 Iterate through the result set and print the data:

You can also perform other operations like insert, update, and delete data using SQL queries in Python.

Overall, Python provides an easy and flexible way to work with MySQL databases, making it a popular

choice for data analysis and web development tasks.

Python has become the go-to language for many data scientists due to its simplicity, versatility,

and powerful libraries and frameworks. Python provides a wide range of libraries and frameworks for

data analysis and manipulation, including NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Keras,

and many more. These libraries and frameworks provide various functionalities such as data

manipulation, visualization, statistical analysis, machine learning, and deep learning.

 NumPy is a library for numerical computing in Python. It provides a multidimensional array

object, which allows efficient computation on large datasets. NumPy also provides various

mathematical functions and operations for array manipulation.

 Pandas is a library for data manipulation and analysis in Python. It provides data structures for

handling tabular data, including DataFrame and Series objects. Pandas allow easy

manipulation of data, including data cleaning, merging, grouping, and filtering.

 Matplotlib is a library for data visualization in Python. It provides various plotting functions to

create different types of plots, including line plots, scatter plots, bar plots, histograms, and more.

 Scikit-learn is a library for machine learning in Python. It provides various algorithms for

classification, regression, clustering, and dimensionality reduction. Scikit-learn also provide tools

for model selection, evaluation, and preprocessing.

 TensorFlow is an open-source library for machine learning developed by Google. It provides a

platform for building and training machine learning models, including deep learning models.

result = mycursor.fetchall()

for row in result:

 print(row)

1067

TensorFlow supports various neural network architectures and allows efficient computation on

GPUs.

 Keras is a high-level neural networks API built on top of TensorFlow. It provides a simplified

interface for building and training deep learning models, making it easy for beginners to get

started with deep learning.

Overall, Python provides a comprehensive set of libraries and tools for data science and analytics,

making it a popular choice for data scientists and analysts. With its simplicity, versatility, and powerful

libraries and frameworks, Python has become the go-to language for data science and analytics tasks.

Advantages of Python:

1. Easy to Learn and Use: Python has a simple and easy-to-read syntax, making it easy for

beginners to learn and write code. It has a large standard library and many third-party

libraries that can be easily installed and used in Python programs. Example: Here's a

simple Python program that prints "Hello, World!" to the console:

2. Versatility: Python is a versatile language that can be used for a wide range of tasks,

including web development, data analysis, machine learning, and more. Example: Here's

a simple Python program that calculates the sum of two numbers:

3. Large Community: Python has a large and active community of developers, which

means there are plenty of resources, tutorials, and documentation available online.

Example: The Python community has developed many useful libraries and frameworks

print("Hello, World!")

a = 2

b = 3

c = a + b

print(c)

1068

for various tasks, such as NumPy for numerical computing, Pandas for data analysis, and

Flask for web development.

4. Cross-platform: Python is a cross-platform language, which means it can run on

different operating systems like Windows, Mac, and Linux. Example: Here's a simple

Python program that prints the current time on different platforms:

Disadvantages of Python:

1. Speed: Python is an interpreted language, which means it can be slower than compiled

languages like C++ or Java. Example: If you have a Python program that performs

complex mathematical operations on large datasets, it may take longer to execute than the

same program written in a compiled language.

2. Weak in Mobile Computing: Python is not well-suited for mobile computing, as it

requires a large runtime environment and may not be optimized for mobile devices.

Example: If you want to develop a mobile app that requires high performance and low

memory usage, you may want to consider using a different language like Swift or

Kotlin.

3. Not Ideal for Memory-intensive Tasks: Python is not ideal for memory-intensive tasks,

as it has limitations in managing memory efficiently. Example: If you want to develop a

program that requires large amounts of memory, like a video game or a scientific

simulation, you may want to consider using a different language like C++ or Fortran.

4. Not Ideal for Real-time Applications: Python is not ideal for real-time applications, as

it has limitations in handling time-critical tasks. Example: If you want to develop a

program that requires real-time performance, like a trading system or a control system,

you may want to consider using a different language like C or Rust.

import datetime

current_time = datetime.datetime.now()

print(current_time)

1069

Here is a brief comparison of C, C++, Java, and Python:

C:

 A low-level programming language used for system programming, embedded systems, and operating

systems.

 Provides direct memory access and low-level control over hardware resources.

 Does not support object-oriented programming (OOP) and automatic memory management.

C++:

 An extension of C that adds OOP features.

 Used for developing applications and software that require high performance and low-level hardware

access.

 Provides access to memory management and supports encapsulation, polymorphism, and inheritance.

Java:

 A high-level programming language designed for cross-platform applications.

 Runs on the Java Virtual Machine (JVM) and provides automatic memory management through garbage

collection.

 Supports OOP features like encapsulation, inheritance, and polymorphism.

 Popular for developing enterprise applications, web applications, and Android mobile applications.

Python:

 A high-level programming language known for its simplicity and readability.

 Provides dynamic typing, automatic memory management, and a large library of modules.

 Supports OOP features and is commonly used for scripting, data analysis, web development, and machine

learning.

In terms of performance, C and C++ are generally faster than Java and Python, but they require more manual

memory management and may have longer development times. Java and Python are generally easier to learn and

use, and are popular for their cross-platform capabilities and large communities of developers. Ultimately, the

choice of programming language depends on the specific project requirements, development resources, and

personal preferences of the developers involved.

Best Linux Books that Every Superuser Should Read:

 How Linux Works: What Every Superuser Should Know

Book by Brian Ward

 The Linux Programming Interface

Book by Michael Kerrisk

 Linux pocket guide

Book by Daniel J. Barrett

 Linux for Beginners

Book by Jason Cannon

 How Linux Works: What Every Superuser Should Know

Book by Brian Ward

 Linux Kernel Development

Book by Robert Love

 Linux: The Complete Reference

Book by Richard Petersen

 Linux in a Nutshell

Book by Ellen Siever and Robert Love

 Linux Basics for Hackers: Getting Started with Networking, Scripting, and Security

in Kali

Book by OccupyTheWeb

 Linux Command Line and Shell Scripting Bible

Book by Christine Bresnahan and Richard BLUM

 Linux Administration: The Linux Operating System and Command Line Guide for

Linux Administrators

Book by Jason Cannon

 The Art of Unix Programming

Book by Eric S. Raymond

 The Linux Command Line, 2nd Edition: A Complete Introduction

Book by William Shotts

 Linux Bible

Book by Christopher Negus

 Linux System Programming: Talking Directly to the Kernel and C Library

Book by Robert Love

 A Practical Guide to Linux Commands, Editors, and Shell Programming

Book by Mark G. Sobell

 Linux for Beginners and Command Line Kung Fu

Book by Jason Cannon

 Linux Device Drivers

Book by Alessandro Rubini, Greg Kroah-Hartman, and Jonathan Corbet

 Advanced Linux programming

Book by Alex Samuel, Jeffrey Oldham, and Mark Mitchell

 Understanding the Linux Kernel

Book by Daniel Pierre Bovet and Marco Cesati

 Learn Linux Quickly: A Beginner-friendly Guide to Getting Up and Running with

the World's Most Powerful Operating System

Book by Ahmed Alkabary

 Linux administration

Book by Wale Soyinka

 Linux For Dummies

Book by Richard Blum

 Linux Essentials

Book by Christine Bresnahan and Richard BLUM

 The Linux Command Line Beginner's Guide

Book by Jonathan Moeller

 Linux All-in-One for Dummies

Book by Emmett Dulaney

 Learning the bash Shell

Book by Cameron Newham

 Linux for Developers: Jumpstart Your Linux Programming Skills

Book by William "Bo" Rothwell

 Lfm: Linux Field Manual

Book by Tim Bryant

 CompTIA Linux+ Study Guide: Exam XK0-005

Book by Christine Bresnahan and Richard BLUM

 sed & awk

Book by Arnold Robbins and Dale Dougherty

 Linux From Scratch

Book by Gerard Beekmans

Linux is a complex example of the wisdom of crowds. It's a good

example in the sense that it shows you can set people to work in

a decentralized way - that is, without anyone really directing

their efforts in a particular direction - and still trust that they're

going to come up with good answers.

− James Surowiecki

Best Programming Books that Every Programmer Should Read:

C:

 The C Programming Language

Book by Brian Kernighan and Dennis Ritchie

 C Programming Absolute Beginner's Guide

Book by Dean Miller and Greg Perry

 Head First C

Book by David Griffiths and Dawn Griffiths

 Expert C Programming

Book by Peter van der Linden

 C Programming: A Modern Approach

Book by K. N King

 C: The complete reference

Book by Herbert Schildt

 Learn C the Hard Way: Practical Exercises on the Computational Subjects You Keep

Avoiding (Like C)

Book by Zed Shaw

 C in a Nutshell: The Definitive Reference

Book by Peter Prinz and Tony Crawford

 C Programming In Easy Steps

Book by Mike McGrath

 Computer Fundamentals and Programming in C

Book by Reema Thareja

 Hands-On Network Programming with C: Learn Socket Programming in C and Write

Secure and Optimized Network Code

Book by Lewis Van Winkle

 Let Us C

Book by Yashavant Kanetkar

 Low-Level Programming: C, Assembly, and Program Execution on Intel® 64 Architecture

Book by Igor Zhirkov

 Effective C: An Introduction to Professional C Programming

Book by Robert C. Seacord

 Data Structures Using C

Book by Reema Thareja

 A Book on C: Programming in C

Book by Al Kelley and Ira Pohl

 C Traps and Pitfalls

Book by Andrew Koenig

 C Interfaces and Implementations: Techniques for Creating Reusable Software

Book by David Hanson and David R. Hanson

 Mastering algorithms with C

Book by Kyle Loudon

 Extreme C: Taking You to the Limit in Concurrency, OOP, and the Most Advanced

Capabilities of C

Book by Kamran Amini

 Let Us C Solutions

Book by Yashavant Kanetkar

 Bare Metal C: Embedded Programming for the Real World

Book by Stephen Oualline

 Introduction to C Programming

Book by Reema Thareja

 C - In Depth

Book by Deepali Srivastava

 C How to Program

Book by Harvey Deitel and Paul Deitel

 The C answer book

Book by Clovis L. Tondo

 C Programming For Dummies

Book by Dan Gookin

 Understanding Pointers In C & C++: Fully Working Examples and Applications of Pointers

Book by Yashavant Kanetkar

C++:

 The C++ Programming Language

Book by Bjarne Stroustrup

 Effective Modern C++

Book by Scott Meyers

 C++ Primer

Book by Barbara E. Moo, Josée Lajoie, and Stanley B. Lippman

 A Tour of C++

Book by Bjarne Stroustrup

 Programming: Principles and Practice Using C++

Book by Bjarne Stroustrup

 C++ Concurrency in Action

Book by Anthony Williams

 Modern C++ Design

Book by Andrei Alexandrescu

 More Effective C++: 35 New Ways To Improve Your Programs And Designs

Book by Scott Meyers

 Accelerated C++: Practical Programming by Example

Book by Andrew Koenig and Barbara E. Moo

 C++ Templates: The Complete Guide

Book by David Vandevoorde, Douglas Gregor, and Nicolai M. Josuttis

 More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and

Solutions

Book by Herb Sutter

 C++ coding standards

Book by Andrei Alexandrescu and Herb Sutter

 C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and

Beyond

Book by Aleksey Gurtovoy and David Abrahams

 Beginning C++ Game Programming

Book by Michael Dawson

 Beginning C++ Programming

Book by Richard Grimes

 C++ Programming

Book by D. S. Malik

 Sams Teach Yourself C++ in One Hour a Day

Book by Rao Siddhartha

 Professional C++

Book by Nicholas A. Solter and Scott J. Kleper

 Starting Out with C++

Book by Tony Gaddis

 C++: The Complete Reference

Book by Herbert Schildt

 Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions

Book by Herb Sutter

 C++ High Performance: Master the Art of Optimizing the Functioning of Your C++ Code

Book by Björn Andrist and Viktor Sehr

 The C++ Standard Library: A Tutorial and Reference

Book by Nicolai M. Josuttis

 Effective C++ Digital Collection: 140 Ways to Improve Your Programming

Book by Scott Meyers

 C++17 - The Complete Guide

Book by Nicolai M. Josuttis

 C++ Primer Plus

Book by Stephen Prata

 Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using

C++ and SYCL

Book by James Brodman, Michael Kinsner, Xinmin Tian, Ben Ashbaugh, John Pennycook,

James Reinders

 Data Structures Using C++

Book by Varsha H. Patil

 The Design and Evolution of C++

Book by Bjarne Stroustrup

 Modern CMake for C++: Discover a Better Approach to Building, Testing, and Packaging

Your Software

Book by Rafał Świdziński

 Expert C++: Become a Proficient Programmer by Learning Coding Best Practices with

C++17 and C++20's Latest Features

Book by Shunguang Wu and Vardan Grigoryan

 Learn C++ Quickly: A Complete Beginner's Guide to Learning C++, Even If You're New to

Programming

Book by Code Quickly

 Memory Management Algorithms and Implementation in C/C++

Book by Bill Blunden

 Thinking in C++

Book by Bruce Eckel

 Modern C++ Programming Cookbook

Book by Marius Bancila

 Hands-On Design Patterns with C++: Solve Common C++ Problems with Modern Design

Patterns and Build Robust Applications

Book by Fedor G. Pikus

 A complete guide to programming in C++

Book by Ulla Kirch-Prinz

 C++ Crash Course: A Fast-Paced Introduction

Book by Josh Lospinoso

 C++ For Dummies

Book by Stephen Randy Davis

JAVA:

 Head First Java

Book by Bert Bates and Kathy Sierra

 Effective Java

Book by Joshua Bloch

 Thinking in Java

Book by Bruce Eckel

 Java Concurrency in Practice

Book by Brian Goetz

 Core Java

Book by Cay S. Horstmann and Gary Cornell

 Java: A Beginner's Guide

Book by Herbert Schildt

 Java: The Complete Reference

Book by Herbert Schildt

 Java 8 in Action: Lambdas, streams, and functional-style programming

Book by Alan Mycroft and Mario Fusco

 Beginning Programming With Java for Dummies

Book by Barry A. Burd

 Learn Java in One Day and Learn It Well

Book by Jamie Chan

 Modern Java in Action: Lambdas, Streams, Functional and Reactive Programming

Book by Alan Mycroft, Mario Fusco, and Raoul-Gabriel Urma

 Test Driven: Practical TDD and Acceptance TDD for Java Developers

Book by Lasse Koskela

 Java Puzzlers: Traps, Pitfalls, and Corner Cases

Book by Joshua Bloch and Neal Gafter

 Spring in Action

Book by Craig Walls and Ryan Breidenbach

 Java generics and collections

Book by Maurice Naftalin

 Core Java Volume I−Fundamentals

Book by Cay S. Horstmann

 Think Java: How to think like a computer scientist

Book by Allen B. Downey

 Java SE 8 for the Really Impatient

Book by Cay S. Horstmann

 Head First Object-Oriented Analysis and Design: A Brain Friendly Guide to OOA&D

Book by Brett McLaughlin

 Learning Java: An Introduction to Real-World Programming with Java

Book by Daniel Leuck, Marc Loy, and Patrick Niemeyer

 Core Java for the Impatient

Book by Cay S. Horstmann

 Java By Comparison: Become a Java Craftsman in 70 Examples

Book by Jorg Lenhard, Linus Dietz, and Simon Harrer

 High-Performance Java Persistence

Book by Vlad Mihalcea

 Java in a Nutshell: A Desktop Quick Reference

Book by Benjamin Evans and David Flanagan

 Spring Microservices in Action

Book by Edward John Carnell

 Optimizing Java: Practical Techniques for Improving JVM Application Performance

Book by Benjamin Evans, Chris Newland, and James Gough

 Java Performance: The Definitive Guide: Getting the Most Out of Your Code

Book by Scott Oaks

 Microservices Patterns: With Examples in Java

Book by Chris Richardson

 Functional Programming in Java: Harnessing the Power of Java 8 Lambda Expressions

Book by Venkat Subramaniam

 Mastering Java Machine Learning

Book by Krishna Choppella and Uday Kamath

 OCA: Oracle Certified Associate Java SE 8 Programmer I Study Guide: Exam 1Z0-808

Book by Jeanne Boyarsky and Scott Selikoff

 Let Us Java: Strong Foundation For Java Programming

Book by Yashavant Kanetkar

 Learn Java: A Crash Course Guide to Learn Java in 1 Week

Book by Timothy C. Needham

 Java Performance

Book by Binu John and Charlie Hunt

 The Java Language Specification

Book by Oracle Corporation

 Elements of Programming Interviews in Java: The Insider's Guide

Book by Adnan Aziz, Amit Prakash, and Tsung-Hsien Lee

PYTHON:

 Fluent Python

Book by Luciano Ramalho

 Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful

World of Computers and Code

Book by Zed Shaw

 Python Cookbook: Recipes for Mastering Python 3

Book by Brian K. Jones and David M. Beazley

 Automate the Boring Stuff with Python: Practical Programming for Total Beginners

Book by Al Sweigart

 Python Crash Course: A Hands-On, Project-Based Introduction to Programming

Book by Eric Matthes

 Head First Python

Book by Paul Barry

 Programming Python

Book by Mark Lutz

 Think Python: An Introduction to Software Design

Book by Allen B. Downey

 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

Book by Wes McKinney

 Python Tricks: A Buffet of Awesome Python Features

Book by Dan Bader

 Learning Python

Book by Mark Lutz

 Introduction to Machine Learning with Python: A Guide for Data Scientists

Book by Andreas C. Müller and Sarah Guido

 Learning Python: Powerful Object-Oriented Programming

Book by Mark Lutz

 Python for Everybody: Exploring Data Using Python 3

Book by Charles Severance

 Python for Kids: A Playful Introduction To Programming

Book by Jason R. Briggs

 Python Programming: An Introduction to Computer Science

Book by John M. Zelle

 Learn Python in One Day and Learn It Well: Python for Beginners with Hands-on Project

Book by Jamie Chan

 Invent Your Own Computer Games with Python

Book by Al Sweigart

 Python Data Science Handbook: Essential Tools for Working with Data

Book by Jake VanderPlas

 Effective Python: 90 Specific Ways to Write Better Python

Book by Brett Slatkin

 Python Pocket Reference: Python In Your Pocket

Book by Mark Lutz

 Python 3 Object Oriented Programming

Book by Dusty Phillips

 How to think like a computer scientist: Learning with Python

Book by Allen B. Downey

 Python in a nutshell

Book by Alex Martelli

 Natural Language Processing with Python

Book by Edward Loper, Ewan Klein, and Steven Bird

 The Big Book of Small Python Projects: 81 Easy Practice Programs

Book by Al Sweigart

 Python Programming for the Absolute Beginner

Book by Michael Dawson

 Python Essential Reference

Book by David M. Beazley

 Deep Learning with Python

Book by François Chollet

 Dive into Python

Book by Mark Pilgrim

 Impractical Python: Projects Playful Programming Activities to Make You Smarter

Book by Lee Vaughan

 Object-Oriented Python: Master OOP by Building Games and GUIs

Book by Irv Kalb

 The Python Bible 7 in 1: Volumes One To Seven (Beginner, Intermediate, Data Science,

Machine Learning, Finance, Neural Networks, Computer Vision)

Book by Florian Dedov

 Coding for Kids: Python: Learn to Code with 50 Awesome Games and Activities

Book by Adrienne Tacke

 Learn More Python 3 the Hard Way: The Next Step for New Python Programmers

Book by Zed Shaw

 Artificial Intelligence with Python

Book by Prateek Joshi

 Python Programming: Using Problem Solving Approach

Book by Reema Thareja

 Django for Beginners: Build websites with Python and Django

Book by William S. Vincent

 Python for Dummies

Book by Aahz Maruch and Stef Maruch

 Beginning Programming with Python For Dummies

Book by John Paul Mueller

HTML:

 Learning Web Design

Book by Jennifer Niederst Robbins

 Head First HTML with CSS and XHTML

Book by Elisabeth Robson and Eric Freeman

 HTML5: The Missing Manual

Book by Matthew MacDonald

 Learn HTML for Beginners: The Illustrated Guide to Coding

Book by Jo Foster

 HTML5 for Web Designers

Book by Jeremy Keith

 HTML 4 for the World Wide Web

Book by Elizabeth Castro

 Introducing HTML5

Book by Bruce Lawson and Remy Sharp

 Core HTML5 Canvas: Graphics, Animation, and Game Development

Book by David M. Geary

 The Definitive Guide to HTML5

Book by Adam Freeman

 Html: Basic Fundamental Guide for Beginners

Textbook by M. G. Martin

 HTML5 in Easy Steps

Book by Mike McGrath

CSS:

 CSS Pocket Reference: Visual Presentation for the Web

Book by Eric A. Meyer

 CSS Secrets: Better Solutions to Everyday Web Design Problems

Book by Lea Verou

 CSS: The Missing Manual

Book by David McFarland

 CSS in Depth

Book by Keith Grant

 CSS mastery

Book by Andy Budd

 CSS: The Definitive Guide: Visual Presentation for the Web

Book by Eric A. Meyer and Estelle Weyl

 CSS Visual Dictionary

Book by Greg Sidelnikov

 Cascading Style Sheets: The Definitive Guide

Book by Eric A. Meyer

 The Book of CSS3: A Developer's Guide to the Future of Web Design

Book by Peter Gasston

 CSS3: The Missing Manual

Book by David Sawyer McFarland

 Learn CSS in One Day and Learn It Well: CSS for Beginners With Hands-On Project

Book by Jamie Chan

 CSS Master

Book by Tiffany A. Brown

 Basics of Web Design: HTML5 and CSS

Textbook by Terry A. Felke-Morris

 CSS for Babies

Book by John Vanden-Heuvel

 CSS in Easy Steps

Book by Mike McGrath

JAVASCRIPT:

 JavaScript: The Good Parts

Book by Douglas Crockford

 Eloquent JavaScript: A Modern Introduction to Programming

Book by Marijn Haverbeke

 JavaScript and JQuery: Interactive Front-End Web Development

Book by Jon Duckett

 You Don't Know JS: Scope and Closures

Book by Kyle Simpson

 A Smarter Way to Learn JavaScript

Book by Mark Myers

 Effective JavaScript : 68 specific ways to harness the power of JavaScript

Book by David Herman

 Head First JavaScript Programming: A Brain-Friendly Guide

Book by Elisabeth Robson and Eric Freeman

 JavaScript: The Definitive Guide: Master the World's Most-Used Programming Language

Book by David Flanagan

 Learn JavaScript Visually: With Interactive Exercises

Book by Ivelin Demirov

 The Principles of Object-Oriented JavaScript

Book by Nicholas C. Zakas

 Professional JavaScript for Web Developers

Book by Nicholas C. Zakas

 Speaking JavaScript: An In-Depth Guide for Programmers

Book by Axel Rauschmayer

 Programming JavaScript Applications: Robust Web Architecture with Node, HTML5, and

Modern JS Libraries

Book by Eric Elliott

 JavaScript Enlightenment

Book by Cody Lindley

 Learning JavaScript Design Patterns

Book by Addy Osmani

 Secrets of the JavaScript Ninja

Book by Bear Bibeault, John Resig and Josip Maras

 Beginning JavaScript

Book by Jeremy McPeak and Paul Wilton

 JavaScript Patterns

Book by Stoyan Stefanov

 Understanding ECMAScript 6: The Definitive Guide for JavaScript Developers

Book by Nicholas C. Zakas

 JavaScript for Kids: A Playful Introduction to Programming

Book by Nick Morgan

 High Performance JavaScript

Book by Nicholas C. Zakas

 Object-Oriented JavaScript

Book by Kumar Chetan Sharma and Stoyan Stefanov

 Maintainable JavaScript

Book by Nicholas C. Zakas

 Secrets of the JavaScript Ninja

Book by Bear Bibeault and John Resig

 Coding with JavaScript For Dummies

Book by Chris Minnick and Eva Holland

 DOM Enlightenment

Book by Cody Lindley

 JavaScript from Beginner to Professional: Learn JavaScript Quickly by Building Fun,

Interactive, and Dynamic Web Apps, Games, and Pages

Book by Laurence Lars Svekis and Rob Percival

 Testable JavaScript

Book by Mark Ethan Trostler

 You Don't Know JS: Up and Going

Book by Kyle Simpson

 JavaScript Allongé: A strong cup of functions, objects, combinators, and decorators

Book by Reginald Braithwaite

 You Don't Know JS Yet: Get Started

Book by Kyle Simpson

 JavaScript and JQuery: The Missing Manual

Book by David Sawyer McFarland

 The Recursive Book of Recursion: Ace the Coding Interview with Python and JavaScript

Book by Al Sweigart

 The Road to Learn React: Your Journey to Master Plain Yet Pragmatic React. Js

Book by Robin Wieruch

 Javascript In Easy Steps

Book by Mike McGrath

 Building JavaScript Games: For Phones, Tablets, and Desktop

Book by Arjan Egges

 High Performance Browser Networking

Book by Ilya Grigorik

 Learning TypeScript

Book by Josh Goldberg

 Pro JavaScript Techniques

Book by John Resig

 The Little Book on CoffeeScript

Book by Alex MacCaw

 Learning React: Functional Web Development with React and Redux

Book by Alex Banks and Eve Porcello

 Learn JavaScript Quickly: A Complete Beginner's Guide to Learning JavaScript, Even If

You're New to Programming

Book by Code Quickly

 Test-Driven JavaScript Development

Book by Christian Johansen

 Structure and Interpretation of Computer Programs, JavaScript Edition

Textbook by Gerald Jay Sussman and Hal Abelson

 Functional Programming in JavaScript: How to Improve Your JavaScript Programs Using

Functional Techniques

Book by Luis Atencio

 Pro JavaScript Design Patterns

Book by Dustin Diaz and Ross Harmes

 Java Script: The Complete Reference 2/E

Book by Thomas Powell

PHP:

 The Joy of PHP: A Beginner's Guide to Programming Interactive Web Applications with

PHP and MySQL

Book by Alan Forbes

 Learning PHP, MySQL, JavaScript, CSS and HTML5: A Step-by-Step Guide to Creating

Dynamic Websites

Book by Robin Nixon

 Programming PHP

Book by Rasmus Lerdorf

 PHP and MySQL Web Development

Book by Laura Thomson and Luke Welling

 Murach's PHP and MySQL

Book by Joel Murach and Ray Harris

 Head First PHP and MySQL

Book by Lynn Beighley and Michael Morrison

 PHP and MySQL: Novice to Ninja: Get Up to Speed With PHP the Easy Way

Book by Tom Butler and Kevin Yank

 PHP and MySQL: Server-side Web Development

Book by Jon Duckett

 Learning PHP, MySQL & JavaScript: With JQuery, CSS & HTML5

Book by Robin Nixon

 PHP and MySQL in easy steps, 2nd Edition: Updated to cover MySQL 8.0

Book by Mike McGrath

 PHP: A Beginner's Guide

Book by Vikram Vaswani

 Modern PHP: New Features and Good Practices

Book by Josh Lockhart

 Laravel: Up & Running: A Framework for Building Modern PHP Apps

Book by Matt Stauffer

 Mastering PHP 7

Book by Branko Ajzele

 PHP and MySQL

Book by Jon Duckett

 PHP and MySQL: The Missing Manual

Book by Brett McLaughlin

 PHP 8 Programming Tips, Tricks and Best Practices: A Practical Guide to PHP 8 Features,

Usage Changes, and Advanced Programming Techniques

Book by Cal Evans and Doug Bierer

 PHP for the Web: Visual QuickStart Guide

Book by Larry Ullman

 PHP and MySQL for Dynamic Web Sites

Book by Larry Ullman

 PHP: Learn PHP in One Day and Learn It Well. PHP for Beginners with Hands-on Project

Book by Jamie Chan

 PHP 7: Real World Application Development

Book by Altaf Hussain, Branko Ajzele and Doug Bierer

 PHP Cookbook

Book by Adam Trachtenberg and David Sklar

 Full Stack Web Development For Beginners: Learn Ecommerce Web Development Using

HTML5, CSS3, Bootstrap, JavaScript, MySQL, and PHP

Book by Riaz Ahmed

 Drupal 9 Module Development: Get Up and Running with Building Powerful Drupal

Modules and Applications

Book by Daniel Sipos

 Building Web Apps with WordPress: WordPress as an Application Framework

Book by Brian Messenlehner and Jason Coleman

 PHP and MySQL in easy steps

Book by Mike McGrath

 WordPress Complete

Book by Karol Król

 PHP, MySQL, and JavaScript All-in-One For Dummies

Book by Richard BLUM

 PHP in Action: Objects, Design, Agility

Book by Chris Shiflett, Dagfinn Reiersol, and Marcus Baker

 PHP Advanced and Object-Oriented Programming: Visual QuickPro Guide

Book by Larry Ullman

 Learning PHP 7

Book by Antonio Lopez

 PHP 7 Programming Cookbook

Book by Doug Bierer

 PHP: The Complete Reference

Book by Steven Holzner

 PHP and MySQL for Dummies

Book by Janet Valade

 PHP Beginner's Practical Guide

Book by Pratiyush Guleria

 Building RESTful Web Services with PHP 7

Book by Haafiz Waheed-ud-din Ahmad

 Mastering PHP Design Patterns

Book by Junade Ali

 PHP and MongoDB Web Development Beginner's Guide

Book by Rubayeet Islam

 PHP 7 Data Structures and Algorithms

Book by Mizanur Rahman

 Mastering The Faster Web with PHP, MySQL, and JavaScript: Develop State-of-the-art

Web Applications Using the Latest Web Technologies

Textbook by Andrew Caya

 Learning PHP: A Gentle Introduction to the Web's Most Popular Language

Book by David Sklar

 Learn PHP 8: Using MySQL, JavaScript, CSS3, and HTML5

Book by Steve Prettyman

 PHP Microservices

Book by Carlos Perez Sanchez and Pablo Solar Vilarino

 Professional CodeIgniter

Book by Thomas Myer

 Symfony 5: The Fast Track

Book by Fabien Potencier

 Practical PHP and MySQL Website Databases: A Simplified Approach

Book by Adrian W. West

 PHP Programming for Beginners: Key Programming Concepts. How to use PHP with

MySQL and Oracle databases (MySqli, PDO)

Book by Sergey Skudaev

ALGORITHMS:

 Introduction to Algorithms

Book by T Cormen, C Leiserson, R Rivest, C Stein

 The Algorithm Design Manual

Book by Steven Skiena

 Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People

Book by Aditya Bhargava

 Algorithms

Book by Robert Sedgewick

 Algorithm Design

Book by Jon Kleinberg and Éva Tardos

 Algorithms Illuminated: Algorithms for NP-hard problems

Book by Tim Roughgarden

 Algorithms in a nutshell

Book by George T. Heineman

 Data structures and algorithms made easy in Java: data structure and algorithmic puzzles

Book by Narasimha karumanchi

 A Common-Sense Guide to Data Structures and Algorithms: Level Up Your Core

Programming Skills

Book by Jay Wengrow

 Cracking the Coding Interview

Book by Gayle Laakmann McDowell

 Guide to Competitive Programming: Learning and Improving Algorithms Through

Contests

Book by Antti Laaksonen

 Algorithms Unlocked

Book by Thomas H. Cormen

 Problem Solving with Algorithms and Data Structures using Python

Book by Bradley N Miller and David L. Ranum

 Computer Science Distilled: Learn the Art of Solving Computational Problems

Book by Wladston Ferreira Filho

 Python Algorithms: Mastering Basic Algorithms in the Python Language

Book by Magnus Lie Hetland

 Advanced Algorithms and Data Structures

Book by Marcello La Rocca

 The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake

Our World

Book by Pedro Domingos

 Dive Into Algorithms: A Pythonic Adventure for the Intrepid Beginner

Book by Bradford Tuckfield

 Advanced Data Structures

Book by Peter Brass

 Algorithmic Thinking: A Problem-Based Introduction

Book by Daniel Zingaro

 Algorithms + Data Structures = Programs

Book by Niklaus Wirth

 Algorithms Illuminated (Part 2): Graph Algorithms and Data Structures

Book by Tim Roughgarden

 Introduction to the Design and Analysis of Algorithms

Book by Anany Levitin

 Automate This: How Algorithms Came to Rule Our World

Book by Christopher Steiner

 Think Like a Programmer: An Introduction to Creative Problem Solving

Book by V. Anton Spraul

 Spies, Lies, and Algorithms: The History and Future of American Intelligence

Book by Amy Zegart

 Algorithms Illuminated (Part 3): Greedy Algorithms and Dynamic Programming

Book by Tim Roughgarden

 Algorithms for Decision Making

Book by Kyle H. Wray, Mykel J. Kochenderfer and Tim A. Wheeler

 Fundamentals of Computer Algorithms

Book by Ellis Horowitz and Sartaj Sahni

 Information Theory, Inference and Learning Algorithms

Book by David J. C. MacKay

 9 Algorithms That Changed the Future

Book by John MacCormick

 The Art of Computer Programming

Book by Donald Knuth

 Data Structure and Algorithmic Thinking with Python

Book by Narasimha Karumanchi

 A Common-Sense Guide to Data Structures and Algorithms

Book by Jay Wengrow

 Hello World: How to be Human in the Age of the Machine

Book by Hannah Fry

 The Design and Analysis of Computer Algorithms

Book by Alfred Aho, Jeffrey Ullman, and John Hopcroft

 Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services

Book by Brendan Burns

 A Programmer's Guide to Computer Science: A virtual degree for the self-taught developer

Book by William M Springer

 Concrete Mathematics

Textbook by Donald Knuth, Oren Patashnik and Ronald Graham

 Understanding Cryptography: A Textbook for Students and Practitioners

Textbook by Christof Paar and Jan Pelzl

 Algorithms For Dummies

Book by John Mueller and Luca Massaron

DATA STRUCTURES:

 Data Structures and Algorithm Analysis in C++

Book by Clifford A Shaffer

 Purely functional data structures

Book by Chris Okasaki

 Open Data Structures: An Introduction

Book by Pat Morin

 Think Data Structures: Algorithms and Information Retrieval in Java

Book by Allen B. Downey

 Data Structures Using C

Book by Reema Thareja

 Data Structures Through C in Depth

Book by Deepali Srivastava and Suresh Kumar Srivastava

 C++ Plus Data Structures

Book by Nell B. Dale

 JavaScript Data Structures and Algorithms: An Introduction to Understanding and

Implementing Core Data Structure and Algorithm Fundamentals

Book by Sammie Bae

 Data structures using C and C++

Book by Yedidyah Langsam

 Algorithms and Data Structures: The Basic Toolbox

Book by Kurt Mehlhorn and Peter Sanders

 Data Structures and Algorithm Analysis in Java

Book by Clifford A Shaffer

 Handbook of Data Structures and Applications

Book by Dinesh P. Mehta and Sartaj Sahni

 Data structures with Java

Book by J. R Hubbard

 Java Structures

Book by Duane A. Bailey

LINUX:

 The Linux Command Line: A Complete Introduction

Book by William E. Shotts Jr. and William E. Shotts, Jr.

 The Linux Programming Interface

Book by Michael Kerrisk

 Linux bible

Book by Christopher Negus

 Linux pocket guide

Book by Daniel J. Barrett

 Linux for Beginners

Book by Jason Cannon

 How Linux Works: What Every Superuser Should Know

Book by Brian Ward

 Linux Basics for Hackers: Getting Started with Networking, Scripting, and Security in Kali

Book by OccupyTheWeb

 Linux Kernel Development

Book by Robert Love

 Linux Administration: The Linux Operating System and Command Line Guide for Linux

Administrators

Book by Jason Cannon

 Linux: The Complete Reference

Book by Richard Petersen

 Linux Command Line and Shell Scripting Bible

Book by Christine Bresnahan and Richard BLUM

 Linux in a Nutshell

Book by Ellen Siever and Robert Love

 The Art of Unix Programming

Book by Eric S. Raymond

 Linux System Programming: Talking Directly to the Kernel and C Library

Book by Robert Love

 A Practical Guide to Linux Commands, Editors, and Shell Programming

Book by Mark G. Sobell

 Learn Linux Quickly: A Beginner-friendly Guide to Getting Up and Running with the

World's Most Powerful Operating System

Book by Ahmed Alkabary

 Linux for Beginners and Command Line Kung Fu

Book by Jason Cannon

 The Ultimate Kali Linux Book: Perform Advanced Penetration Testing Using Nmap,

Metasploit, Aircrack-Ng, and Empire

Book by Glen D. Singh

 Understanding the Linux Kernel

Book by Daniel Pierre Bovet and Marco Cesati

 Linux for Developers: Jumpstart Your Linux Programming Skills

Book by William "Bo" Rothwell

 Learning the bash Shell

Book by Cameron Newham

 Linux Device Drivers

Book by Alessandro Rubini, Greg Kroah-Hartman, and Jonathan Corbet

 Mastering Linux Shell Scripting: A Practical Guide to Linux Command-line, Bash

Scripting, and Shell Programming

Book by Andrew Mallett and Mokhtar Ebrahim

 Efficient Linux at the Command Line

Book by Daniel J. Barrett

 Shell Scripting: How to Automate Command Line Tasks Using Bash Scripting and Shell

Programming

Book by Jaosn Cannon

 Advanced Programming in the Unix Environment

Book by W. Richard Stevens

 Lfm: Linux Field Manual

Book by Tim Bryant

 CompTIA Linux+ Certification All-in-One Exam Guide

Book by Ted Jordan and Sandor Strohmayer

 Advanced Linux programming

Book by Alex Samuel, Jeffrey Oldham and Mark Mitchell

 Linux Kernel in a Nutshell

Book by Greg Kroah-Hartman

 Linux Kernel Debugging: Leverage Proven Tools and Advanced Techniques to Effectively

Debug Linux Kernels and Kernel Modules

Book by Kaiwan N Billimoria

 Bash cookbook

Book by Carl Albing

 Linux for Beginners: A Practical and Comprehensive Guide to Learn Linux Operating

System and Master Linux Command Line.

Book by Ethem Mining

 Beginning Linux Programming

Book by Mathew Neil and Richard Stones

 The Linux Command Line Beginner's Guide

Book by Jonathan Moeller

 Linux System Programming

Book by Robert Love

 A Practical Guide to Fedora and Red Hat Enterprise Linux

Book by Mark G. Sobell

 Kali Linux Hacking: A Complete Step by Step Guide to Learn the Fundamentals of Cyber

Security, Hacking, and Penetration Testing

Book by Ethem Mining

 Kali Linux Revealed: Mastering the Penetration Testing Distribution

Book by Jim O'Gorman, Mati Aharoni and Raphael Hertzog

 Linux in Easy Steps

Book by Mike McGrath

 Bash Pocket Reference: Help for Power Users and Sys Admins

Book by Arnold Robbins

 Learn PowerShell in a Month of Lunches: Covers Windows, Linux, and macOS

Book by Travis Plunk, James Petty and Leon Leonhardt

 Linux From Scratch

Book by Gerard Beekmans

 Linux For Dummies

Book by Richard Blum

DATABASE:

 Database Systems: The Complete Book

Book by Héctor García-Molina, Jeffrey Ullman and Jennifer Widom

 Fundamentals of Database Systems

Book by Ramez Elmasri

 Database Design for Mere Mortals

Book by Michael J. Hernandez

 An Introduction to Database Systems

Book by Christopher J. Date

 SQL Antipatterns: Avoiding the Pitfalls of Database Programming

Book by Bill Karwin

 Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and

Maintainable Systems

Book by Martin Kleppmann

 Database System Concepts

Book by Avi Silberschatz, Henry F. Korth and S. Sudarshan

 Database Internals: A Deep Dive Into How Distributed Data Systems Work

Book by Alex Petrov

 Beginning Database Design Solutions

Book by Rod Stephens

 SQL Performance Explained

Book by Markus Winand

 Database Management Systems

Book by Johannes Gehrke and Raghu Ramakrishnan

 Oracle PL/SQL programming

Book by Scott Urman

 Database in Depth: Relational Theory for Practitioners

Book by Christopher J. Date

 Database Design and Relational Theory: Normal Forms and All That Jazz

Book by Christopher J. Date

 Database Systems: A Practical Approach to Design, Implementation, and Management

Book by Carolyn Begg and Thomas M. Connolly

 Introductory Relational Database Design for Business, with Microsoft Access

Book by Bonnie R. Schultz and Jonathan Eckstein

 Head First SQL: Your Brain on SQL − A Learner's Guide

Book by Lynn Beighley

 Readings in Database Systems

Book by Joseph M Hellerstein

 The art of SQL

Book by Stéphane Faroult

 The theory of relational databases

Book by David Maier

 The Data Warehouse Toolkit

Book by Ralph Kimball

 MongoDB: The Definitive Guide

Book by Kristina Chodorow and Michael Dirolf

 Learning SQL

Book by Alan Beaulieu

 Joe Celko's SQL puzzles and answers

Book by Joe Celko

 Foundations of databases

Book by Serge Abiteboul

 Pro SQL Server Relational Database Design and Implementation: Best Practices for

Scalability and Performance

Book by Louis Davidson

 Six-Step Relational Database Design: A Step by Step Approach to Relational Database

Design and Development

Book by Fidel A. Captain

 Databases, Types and the Relational Model: The Third Manifesto

Book by Christopher J. Date

 Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement

Book by Eric Redmond and Jim R. Wilson

 Practical SQL: A Beginner's Guide to Storytelling with Data

Book by Anthony DeBarros

 Refactoring databases

Book by Scott Ambler

 SQL QuickStart Guide: The Simplified Beginner's Guide to Managing, Analyzing, and

Manipulating Data With SQL

Book by Walter Shields

 PHP and MySQL: Server-side Web Development

Book by Jon Duckett

 SQL Cookbook

Book by Anthony Molinaro

 Learn MongoDB 4.x: A Guide to Understanding MongoDB Development and

Administration for NoSQL Developers

Book by Doug Bierer

 Professional Azure SQL Managed Database Administration: Efficiently Manage and

Modernize Data in the Cloud Using Azure SQL

Book by Ahmad Osama and Shashikant Shakya

 PostgreSQL: Up and Running

Book by Leo S. Hsu and Regina O. Obe

 SQL All-in-One for Dummies

Book by Allen G. Taylor

 An Introduction to Relational Database Theory

Book by Hugh Darwen

 Transaction Processing: Concepts and Techniques

Book by Jim Gray

 Making Sense of NoSQL: A Guide for Managers and the Rest of Us

Book by Ann Kelly, Ann Marie Kelly and Dan McCreary

 A Practical Guide to Database Design

Book by Rex Hogan

 Database Development for Dummies

Book by Allen G. Taylor

 SQL Queries for Mere Mortals: A Hands-on Guide to Data Manipulation in SQL

Book by John Viescas and Michael J. Hernandez

 Pro SQL Server 2012 Relational Database Design and Implementation

Book by Jessica Moss and Louis Davidson

 SQL Performance Explained: Everything Developers Need to Know about SQL

Performance

Book by Markus Winand

 Refactoring Databases: Evolutionary Database Design

Book by Scott W Ambler and Pramod J Sadalage

 Designing Data-Intensive Applications

Book by Martin Kleppmann

Programming today is a race between software engineers striving to

build bigger and better idiot-proof programs, and the Universe trying to

produce bigger and better idiots. So far, the Universe is winning.

― Rick Cook, The Wizardry Compiled

"In some ways, programming is like painting. You start with a blank

canvas and certain basic raw materials. You use a combination of

science, art, and craft to determine what to do with them."

− Andrew Hunt

One final thought:

If you feel that this information has been useful to you, please take a

moment to share it with your friends on LinkedIn, Facebook and

Twitter. Consider writing a brief review on Google Play Books if you

feel that this book has helped you in your programming career and you

have learned something worthwhile.

Coding is both a science and creative art to me. It is both incredibly

fun and fascinating. I want to spread my passion to as many

individuals as I can. I also hope that this is not the end of your

learning.

Thank you!

This is a Creative Commons licensed edition
 downloaded from
www.obooko.com

No charge has been made to access or download this book.
You may freely use this digital copy in accordance with the

terms and conditions of the Creative Commons license
attribution appearing in this work.

https://www.obooko.com/
https://www.obooko.com/

